nope...itz not necessary that the frame should be inertial....the only necesarry condition is that the TOTAL EXTERNAL TORQUE acting ABOUT THE REFERENCE AXIS should be ZERO...
An inertial frame of reference (FOR) is a non-accelerating FOR , for example if a person is observing a moving car while at rest or while moving at constant velocity, he is in an inertial FOR. A non-inertial frame of reference is an accelerating FOR for example a rotating FOR. ( Rotation requires centripetal force and centripetal acceleration so any rotating object always requires a centripetal acceleration to rotate.)
An inertial reference frame is a frame of reference in which an object not subject to external forces moves at a constant velocity. An absolute reference frame is a hypothetical frame of reference that is fixed in space and in which all other frames of reference are measured. Inertial reference frames are relative to each other, while the absolute reference frame provides a universal standard of motion.
In an inertial frame of reference, objects move at a constant velocity or remain at rest without any external forces acting on them. In a non-inertial frame of reference, objects may appear to accelerate or experience fictitious forces due to the frame itself accelerating or rotating.
No. An object has momentum only if it is in motion..There are two kinds of momentum: linear momentum(or translational momentum), and angular momentum (or rotational momentum)..Linear momentum is a vector quantity and is calculated as mass x velocity (p = mv). Therefore, if an object's velocity is zero, then it has no linear momentum, but if an object is in motion, then it does have linear momentum..VERY IMPORTANT NOTE: Velocity, and therefore linear momentum, is always relative to the frame of reference. For a more complete discussion about velocity, see the related answer, referenced below, entitled 'How to Find Velocity'..Angular momentum is a pseudovector quantity that describes the momentum of an object that is spinning or rotating in place. An object has angular momentum only when it is spinning, or rotating about an axis. When an object is not spinning or rotating, then it does not have angular momentum..It is possible for an object to have only linear momentum, only angular momentum, or both angular and linear momentum. Note that this discussion falls apart in quantum mechanics, so we are only discussing classical physics - that is, every day observable objects, and not light particles (photons), electrons, or other quantum particles..All objects do have inertia, which is a resistance to a change in its momentum.
No, the Earth is not an inertial frame of reference due to its rotation and revolution around the Sun. In an inertial frame, objects move in straight lines at constant speeds unless acted upon by external forces, which is not the case for objects on Earth due to these motions.
An inertial frame of reference (FOR) is a non-accelerating FOR , for example if a person is observing a moving car while at rest or while moving at constant velocity, he is in an inertial FOR. A non-inertial frame of reference is an accelerating FOR for example a rotating FOR. ( Rotation requires centripetal force and centripetal acceleration so any rotating object always requires a centripetal acceleration to rotate.)
An inertial reference frame is a frame of reference in which an object not subject to external forces moves at a constant velocity. An absolute reference frame is a hypothetical frame of reference that is fixed in space and in which all other frames of reference are measured. Inertial reference frames are relative to each other, while the absolute reference frame provides a universal standard of motion.
In an inertial frame of reference, objects move at a constant velocity or remain at rest without any external forces acting on them. In a non-inertial frame of reference, objects may appear to accelerate or experience fictitious forces due to the frame itself accelerating or rotating.
No. An object has momentum only if it is in motion..There are two kinds of momentum: linear momentum(or translational momentum), and angular momentum (or rotational momentum)..Linear momentum is a vector quantity and is calculated as mass x velocity (p = mv). Therefore, if an object's velocity is zero, then it has no linear momentum, but if an object is in motion, then it does have linear momentum..VERY IMPORTANT NOTE: Velocity, and therefore linear momentum, is always relative to the frame of reference. For a more complete discussion about velocity, see the related answer, referenced below, entitled 'How to Find Velocity'..Angular momentum is a pseudovector quantity that describes the momentum of an object that is spinning or rotating in place. An object has angular momentum only when it is spinning, or rotating about an axis. When an object is not spinning or rotating, then it does not have angular momentum..It is possible for an object to have only linear momentum, only angular momentum, or both angular and linear momentum. Note that this discussion falls apart in quantum mechanics, so we are only discussing classical physics - that is, every day observable objects, and not light particles (photons), electrons, or other quantum particles..All objects do have inertia, which is a resistance to a change in its momentum.
No, the Earth is not an inertial frame of reference due to its rotation and revolution around the Sun. In an inertial frame, objects move in straight lines at constant speeds unless acted upon by external forces, which is not the case for objects on Earth due to these motions.
No, an inertial reference frame is not an absolute reference frame. It is a frame of reference in which an object either remains at rest or moves with constant velocity in a straight line, but it is not considered absolute as its motion can be affected by external forces.
newtons laws are always valid in non inertial frames
An inertial frame of reference is a frame in which a body either at rest or in uniform motion will remain at rest or continue to move in a straight line at constant speed unless acted upon by an external force. It is a frame that moves at a constant velocity with no acceleration.
In a two-car system, the relative velocity between the two cars is the same in any inertial reference frame.
Earth is considered a noninertial frame of reference due to its rotation and orbital motion. Inertial frames are frames of reference where Newton's laws of motion hold true without the influence of external forces, which is not the case for Earth.
Yes, a satellite orbiting a planet, such as Earth, is in an inertial reference frame. This is puzzling because the satellite is not moving in a straight line. Doesn't that mean it is accelerated to curve its path circling the Earth? The only reliable way of determining whether or not you are in an inertial frame is by detection of a force that prevents you from floating freely in your space ship. If you are floating freely, as you would in the orbiting International Space Station (a big satellite), then you are in an inertial frame. If you are able to sit or stand unrestrained in your space ship then the ship is undergoing some sort of an acceleration. This really has nothing to do with your trajectory since, for example, you can speed up or slow down on a "straight line" and feel the force of acceleration. The only straight line that can be used to define an inertial frame is the geodesic path described in Einstein's General Theory of Relativity.
The most common frame of reference in physics is the inertial frame of reference, where an object is considered to be at rest or moving with constant velocity. Observers in different inertial frames will agree on the laws of physics governing the motion of objects.