answersLogoWhite

0

No, the pressure at the bottom of a tank of fluid is directly proportional to the height of the fluid above that point and the density of the liquid, according to the hydrostatic pressure formula. It is not directly proportional to the density of the liquid alone.

User Avatar

AnswerBot

1y ago

What else can I help you with?

Continue Learning about Physics

The pressure at the bottom of a barrel filled with liquid does NOT depend on the?

The pressure at the bottom of a barrel filled with liquid does not depend on the shape or size of the barrel. It depends only on the depth of the liquid and the density of the liquid.


Relationship between liquid pressure and density?

If you were submerged in a liquid more dense than water, the pressure would be correspondingly greater. The pressure due to a liquid is precisely equal to the product of weight density and depth. liquid pressure = weight density x depth. also the pressure a liquid exerts against the sides and bottom of a container depends on the density and the depth of the liquid.


What are the factors on which liquid pressure depends?

Liquid pressure depends on the depth of the liquid, the density of the liquid, and the gravitational acceleration acting on the liquid. The pressure increases with depth due to the weight of the liquid above and is directly proportional to the density of the liquid.


How does the pressure exerted by a liquid vary with direction and depth?

The pressure exerted by a liquid increases with depth. This is known as hydrostatic pressure and is directly proportional to the density of the liquid. The pressure variation with direction is isotropic, meaning it is the same regardless of the direction taken in the liquid.


Pressure on the surface of liquid depends on?

The pressure on the surface of a liquid depends on the depth of the liquid and the density of the liquid. The pressure increases with depth due to the weight of the liquid above and also depends on the density of the liquid.

Related Questions

What is the relationship between liquid pressure and the depth of a liquid between liquid pressure and density?

pressure of liquid on bottom=density*gravitational force*depth :)


The pressure at the bottom of a barrel filled with liquid does NOT depend on the?

The pressure at the bottom of a barrel filled with liquid does not depend on the shape or size of the barrel. It depends only on the depth of the liquid and the density of the liquid.


Relationship between liquid pressure and density?

If you were submerged in a liquid more dense than water, the pressure would be correspondingly greater. The pressure due to a liquid is precisely equal to the product of weight density and depth. liquid pressure = weight density x depth. also the pressure a liquid exerts against the sides and bottom of a container depends on the density and the depth of the liquid.


What effect does the size of the container have on the pressure of the liquid at its bottom?

The horizontal dimensions of the container ... like length and width ... don't make any difference. But the pressure at the bottom is directly proportional to the depth of the liquid, which is ultimately limited by the height of the container.


What are the factors on which liquid pressure depends?

Liquid pressure depends on the depth of the liquid, the density of the liquid, and the gravitational acceleration acting on the liquid. The pressure increases with depth due to the weight of the liquid above and is directly proportional to the density of the liquid.


How does the pressure exerted by a liquid vary with direction and depth?

The pressure exerted by a liquid increases with depth. This is known as hydrostatic pressure and is directly proportional to the density of the liquid. The pressure variation with direction is isotropic, meaning it is the same regardless of the direction taken in the liquid.


Pressure on the surface of liquid depends on?

The pressure on the surface of a liquid depends on the depth of the liquid and the density of the liquid. The pressure increases with depth due to the weight of the liquid above and also depends on the density of the liquid.


Explain hydrostatic pressure?

Hydrostatic pressure is the pressure exerted on a fluid at rest due to the weight of the fluid above it. It is directly proportional to the depth of the fluid and the density of the fluid. In a column of fluid, the pressure increases with increasing depth due to the weight of the fluid above pushing down.


How is pressure in the liquid related to depth?

Pressure in a liquid is directly proportional to the depth of the liquid. As depth increases, the weight of the liquid above exerts more force downwards, increasing the pressure at that depth. This relationship is described by the equation P = ρgh, where P is the pressure, ρ is the density of the liquid, g is the acceleration due to gravity, and h is the depth.


How does liquid pressure vary with density of liquid?

Imagine a glass tube with equal cross-section of 1 square cm and of length 100 cm. Fill the tube with the liquid of density 'd' to the 75cm mark.The pressure at the bottom of each tube is the force exerted per unit area by the column of liquid in the tube. We have conveniently selected tubes with 1 sq cm (unit area in CGS system) cross sectional areas. So the weight of the column in the tube would be the pressure. Hence the pressure in the tube would be1) Weight of the 75cm liquid column = 75 x d x g = 75dg dynesThe presuure depends on the density in a linear proportion.Read more: How_does_liquid_pressure_different_with_density_of_liquid


Why liquid pressure greatest in bottom?

Because above the bottom most layer there is maximum height of the liquid stands on. Also the expression for the pressure is hdg. h- height of the liquid. d-density of the liquid. g-acceleration due to gravity. Hence maximum h leads to max pressure.


Why liquid rushes faster at the bottom hole than the tops?

The liquid rushes faster at the bottom hole because of the effects of gravity. The pressure at the bottom hole is higher due to the weight of the liquid above it, causing it to flow faster. Buoyancy effects also play a role in the flow dynamics.