Yes. The Earth's magnetic field changes and has flipped in historical times. Velikovsky noticed this in examining the magnetic oruientation of ancient pottery.
When the magnet is moved into the solenoid, the change in magnetic field induces an electric current in the solenoid. This induced current then creates a magnetic field that opposes the initial magnetic field created by the permanent magnet. This opposing magnetic field causes the galvanometer deflection to be reversed.
This process is called electromagnetic induction. When a wire is moved within a magnetic field or a magnetic field is changed around a wire, it creates an electric current in the wire. This is the underlying principle behind how electricity is generated in things like generators and electric motors.
A compass needle aligns itself with the Earth's magnetic field, pointing towards the magnetic North Pole. When the compass is moved or rotated, the needle remains aligned with the magnetic field, causing it to change direction accordingly.
When a wire is moved through a magnetic field, it generates an electric current in the wire through electromagnetic induction. This phenomenon is described by Faraday's law of electromagnetic induction. The direction and magnitude of the induced current depend on the speed and direction of movement of the wire relative to the magnetic field.
Induced
When the magnet is moved into the solenoid, the change in magnetic field induces an electric current in the solenoid. This induced current then creates a magnetic field that opposes the initial magnetic field created by the permanent magnet. This opposing magnetic field causes the galvanometer deflection to be reversed.
This process is called electromagnetic induction. When a wire is moved within a magnetic field or a magnetic field is changed around a wire, it creates an electric current in the wire. This is the underlying principle behind how electricity is generated in things like generators and electric motors.
The continents have moved, Volcanoes and mountains have made hige changes in the earths suface too.
a conductor is moved through a magnetic field
Induced.
A compass needle aligns itself with the Earth's magnetic field, pointing towards the magnetic North Pole. When the compass is moved or rotated, the needle remains aligned with the magnetic field, causing it to change direction accordingly.
The magnetic orientation of rocks can be used to track the movement of continents by recording the direction and intensity of Earth's magnetic field at the time the rocks formed. When rocks solidify, they lock in the orientation of Earth's magnetic field. By comparing the magnetic orientation of rocks from different locations, geologists can determine how the continents have drifted over time.
Could you specify "coil"? Generally the electromagnetic induction occures due to variation of the B-field (magnetic flux density), variation of the current, I, or a change in the total area in which an electric current span over a B-field.
A net force acts on the electrons in the copper wire ...the electrons move depending on the direction of magnetic field and the motion of the wire and henc e there will be a current in the wire
If the magnetic field is caused only by a current, you can turn the current off.If you have another magnetic field, for example due to a permanent magnet, with a current you can create a magnetic field that counters the first one. But that will only work in certain regions in space; you can't cancel such a magnetic field everywhere in space.
When current is suddenly passed through a conductor in a magnetic field, it experiences a force due to the interaction between the magnetic field and the current. This force causes the conductor to move, resulting in electromagnetic induction and the generation of an electric current in the conductor.
Flux linkage in a coil increases when the magnetic field strength or the number of turns in the coil increases, resulting in more magnetic field lines passing through the coil. Conversely, flux linkage decreases if the magnetic field strength weakens or if the coil is moved away from the magnetic field source. Additionally, changes in the orientation of the coil relative to the magnetic field can also affect flux linkage. In summary, the factors that influence flux linkage include magnetic field strength, coil turns, and coil positioning.