answersLogoWhite

0

The direction of induced current in a circuit can be determined using Lenz's Law, which states that the induced current will flow in a direction that opposes the change in magnetic field that caused it. This means that the direction of the induced current will be such that it creates a magnetic field that opposes the original change in magnetic field.

User Avatar

AnswerBot

3mo ago

What else can I help you with?

Related Questions

How can we use Lenz's Law to determine the direction of induced current in each case?

Lenz's Law states that the direction of the induced current in a circuit is such that it opposes the change in magnetic flux that caused it. By applying Lenz's Law, we can determine the direction of the induced current by considering the direction of the changing magnetic field and the direction of the induced current that would oppose that change.


What should you do to verify the direction of the induced current in a circuit?

To verify the direction of the induced current in a circuit, you can use the right-hand rule. Point your right thumb in the direction of the changing magnetic field and curl your fingers. The direction your fingers curl will indicate the direction of the induced current.


Who formulated a law for determining the direction of the induced current in a conductor?

There is no such thing as an 'induced current'. What is 'induced' is a voltage. If the conductor into which that voltage is induced forms a complete circuit, then a current will result. But it's the voltage that's induced, NOT the current! The direction of the induced voltage is explained by Lenz's Law which, in simple terms, tells us that the direction of the inducted voltage is always such that it will oppose the change in current that causes it. So the induced voltage will oppose any increase in current, but will act in the same direction as a reduction in current.


What determines whether an induced current is a direct current or an alternating current?

There is no such thing as an 'induced current'. What is 'induced' is a voltage. The direction of the induced voltage is determined by the direction of the changing current that induces that voltage, because the induced voltage will always act to oppose that change in current. So, if the current is increasing, then the direction of the induced voltage will act to opposethe increase in current. If the current is decreasing, then the direction of the induced voltage will act to sustainthat current.


Which law gives the direction of induced current?

LENZ LAW gives the direction of induced current.


What is the direction of the induced current in Figure 1?

In Figure 1, the direction of the induced current is clockwise.


What is the direction of the induced current in loop b?

The direction of the induced current in loop b is clockwise.


Is lenz law used to find induced EMF's?

It's primary usage is to determine the nature of an induced EMF from changes in the magnetic flux through a circuit. However, you must use Faraday's Law (and a unit conversion factor) to determine the SIZE of such an EMF.


What is induction of electric current?

According to Farady's law, whenever the flux linking with the coil changes, emf will induce in that coil.Actually the material should oppose the flux changes, that opposition is the induced current. Induced current will set own flux, opposite to that of the flux changes.For further details, refer lenz law.


What is the direction of the induced current in a loop when there is a change in magnetic field direction?

When there is a change in the direction of the magnetic field in a loop, an induced current is generated in the loop in a direction that opposes the change in the magnetic field.


What rule should you use in order to determine the direction of induced EMF in a coil?

The direction of an induced voltage is such that it always acts to oppose any change of current which causes it.So, for example, during the first quarter-cycle of a sine wave, when the current is increasing, the induced voltage acts oppose that change (increase) -in other words, it acts in the opposite direction to that current. During the second quarter-cycle of a sine wave, when the current is decreasing, the induced voltage again acts opposethat decrease that change (decrease) -in other words, it acts in the same direction to that current -trying to sustain that current.


What factors determine the voltage induced in a wire?

V = I * R or I = ( V / R ) I = current (amps) V = Voltage R = Resistance The current in a circuit depends on the applied voltage and the resistance of the circuit.