answersLogoWhite

0

The energy stored in a capacitor can be calculated using the formula: E 0.5 C V2, where E is the energy stored, C is the capacitance of the capacitor, and V is the voltage across the capacitor.

User Avatar

AnswerBot

3mo ago

What else can I help you with?

Related Questions

How to calculate the energy stored in a capacitor?

The energy stored in a capacitor can be calculated using the formula: E 0.5 C V2, where E is the energy stored, C is the capacitance of the capacitor, and V is the voltage across the capacitor.


How to find the energy stored in a capacitor?

The energy stored in a capacitor can be found using the formula: E 0.5 C V2, where E is the energy stored, C is the capacitance of the capacitor, and V is the voltage across the capacitor.


Where is energy stored in a capacitor and in inductor?

Energy is stored in a capacitor in the electric field between its plates. In an inductor, energy is stored in the magnetic field around the coil.


What is formula for maximum energy stored in capacitor?

The formula for maximum energy stored in a capacitor is given by ( E = \frac{1}{2}CV^2 ), where ( E ) is the energy stored, ( C ) is the capacitance of the capacitor, and ( V ) is the voltage across the capacitor.


Calculate the energy delivered by 20V battery to a capacitor of capacitance 10uF?

the formula for energy stored in a capacitor is (1/2)*cv^2 given v=20v, c =10*10^-6 f by using this information you can easily calculate the energy


What is the energy stored in magnet field of the capacitor?

The energy stored in the magnetic field of a capacitor is typically negligible compared to the energy stored in the electric field between the capacitor plates. In most practical capacitor applications, the dominant energy storage mechanism is the electric field between the plates.


How does the energy stored in a capacitor change when the potential difference across it is doubled?

When the potential difference across a capacitor is doubled, the energy stored in the capacitor increases by a factor of four.


What is the total electric-field energy stored in the capacitor when charged to its maximum capacity?

The total electric-field energy stored in a capacitor when charged to its maximum capacity is equal to the energy stored in the electric field between the capacitor plates. This energy can be calculated using the formula: E 1/2 C V2, where E is the energy stored, C is the capacitance of the capacitor, and V is the voltage across the capacitor plates.


What is the initial condition of the elements capacitor and inductor that have no initial energy stored?

The initial condition of a capacitor that has no energy stored is zero volts. The initial condition of an inductor that has no energy stored is zero amperes.


What is the relationship between the electric field in a capacitor and the amount of stored energy in the system?

The electric field in a capacitor is directly proportional to the amount of stored energy in the system. This means that as the electric field increases, the amount of stored energy in the capacitor also increases.


What is the energy stored in electric field of a capacitor?

The energy stored in the electric field of a capacitor is given by the formula: ( \frac{1}{2} C V^2 ), where C is the capacitance of the capacitor and V is the voltage across it. This energy represents the potential energy stored in the form of electric field between the charged plates of the capacitor.


When does a capacitor discharge?

A capacitor discharges when it releases the stored electrical energy it has accumulated. This typically happens when the capacitor is connected to a circuit or load that allows the energy to flow out of the capacitor.