To determine the initial velocity in projectile motion, you can use the equation v (x y) / t, where v is the initial velocity, x is the horizontal distance traveled, y is the vertical distance traveled, and t is the time taken.
To determine the time a projectile is in motion, you need to know the initial velocity of the projectile, the angle at which it is launched, and the acceleration due to gravity. Using these parameters, you can calculate the time of flight using projectile motion equations.
To determine the launch velocity of a projectile, you can use the projectile motion equations. By measuring the initial height, horizontal distance traveled, and the angle of launch, you can calculate the launch velocity using trigonometry and kinematic equations.
To determine the vertical velocity of a projectile, you can use the formula: vertical velocity initial vertical velocity (acceleration due to gravity x time). The initial vertical velocity is the speed at which the projectile is launched upwards or downwards. Acceleration due to gravity is typically -9.8 m/s2 (negative because it acts downwards). Time is the duration for which the projectile has been in motion. By plugging in these values, you can calculate the vertical velocity of the projectile.
To determine how far a projectile travels horizontally, you need to know the initial velocity of the projectile, the angle at which it was launched, and the acceleration due to gravity. Using these values, you can calculate the horizontal distance traveled using the projectile motion equations.
The hypothesis of projectile motion typically involves predicting the path of a projectile based on initial conditions such as angle of launch, initial velocity, and gravity. It could be stated as: "The projectile will follow a curved path known as a parabola, determined by the initial velocity and launch angle, and will be influenced by gravity throughout its flight."
To determine the time a projectile is in motion, you need to know the initial velocity of the projectile, the angle at which it is launched, and the acceleration due to gravity. Using these parameters, you can calculate the time of flight using projectile motion equations.
To determine the launch velocity of a projectile, you can use the projectile motion equations. By measuring the initial height, horizontal distance traveled, and the angle of launch, you can calculate the launch velocity using trigonometry and kinematic equations.
Some of the factors that determine the movements of a projectile include: air resistance, force of gravity, initial launch velocity, the angle a projectile was launched at, and the objects initial elevation.
To determine the vertical velocity of a projectile, you can use the formula: vertical velocity initial vertical velocity (acceleration due to gravity x time). The initial vertical velocity is the speed at which the projectile is launched upwards or downwards. Acceleration due to gravity is typically -9.8 m/s2 (negative because it acts downwards). Time is the duration for which the projectile has been in motion. By plugging in these values, you can calculate the vertical velocity of the projectile.
To determine how far a projectile travels horizontally, you need to know the initial velocity of the projectile, the angle at which it was launched, and the acceleration due to gravity. Using these values, you can calculate the horizontal distance traveled using the projectile motion equations.
The hypothesis of projectile motion typically involves predicting the path of a projectile based on initial conditions such as angle of launch, initial velocity, and gravity. It could be stated as: "The projectile will follow a curved path known as a parabola, determined by the initial velocity and launch angle, and will be influenced by gravity throughout its flight."
The minimum initial velocity required for a projectile to reach a target 90 km away depends on the angle at which the projectile is launched, as well as the effects of air resistance and other factors. A common approach is to use projectile motion equations to determine the initial velocity needed for the projectile to cover the horizontal distance of 90 km in the given conditions.
Yes, in projectile motion, the vertical component of motion is influenced by the initial velocity in the vertical direction. The horizontal and vertical components of motion are independent of each other, with the horizontal component being influenced by the initial velocity in the horizontal direction.
To find the initial velocity of the x-axis in projectile motion, you can use the formula: (v_{0x} = v_0 \cdot \cos(\theta)), where (v_{0x}) is the initial velocity in the x-direction, (v_0) is the initial velocity of the projectile, and (\theta) is the angle of projection. By multiplying the initial velocity with the cosine of the launch angle, you can determine the initial velocity in the x-axis direction.
The angle of projection in projectile motion is determined by using the formula: arctan(vy / vx), where is the angle of projection, vy is the vertical component of the initial velocity, and vx is the horizontal component of the initial velocity.
The object's initial distance above the ground The object's initial velocity
The mass of a projectile has no direct effect on its horizontal motion in projectile motion. However, a heavier mass may affect the projectile's vertical motion by influencing factors such as initial velocity, air resistance, and gravity, which can impact its trajectory.