According to the law of conservation of momentum which states that in a closed system momentum before collision is equal to the momentum after collision.
When the mass of a moving object is doubled and its speed remains the same, its momentum also doubles. Momentum is directly proportional to mass, so doubling the mass will result in a doubling of the momentum regardless of the speed.
As a star shrinks, its angular speed typically increases due to the conservation of angular momentum. This means that as the star's radius decreases, its rotation rate speeds up in order to conserve the total angular momentum of the system.
Yes, momentum is conserved in the cannon-cannonball system. When the cannon fires the cannonball, the cannon moves in the opposite direction to conserve momentum. This is based on the principle of conservation of momentum in a closed system.
Increasing mass affects both angular and linear momentum differently. For linear momentum, doubling the mass doubles the momentum if velocity remains constant. For angular momentum, increasing mass without changing the distribution around the axis of rotation affects angular momentum due to rotational inertia. In simple terms, the rotational speed would likely decrease to conserve angular momentum.
Momentum of an object is its own property but it can be transferred by that object to any other object during their collision ( elastic or inelastic ) so as to conserve the total momentum of the system as demonstrated by the law of conservation of momentum. One of the examples of the transferring of momentum is the transfer of momentum and incident energy from photons of x rays to the loosely bound electrons in graphite target in Compton effect.
Nancy Daisy a. Rodriguez its smart
In an isolated system the total momentum of a system remains conserved. For example If you fire a bullet from Gun , bullet go forward with some linear momentum and in order to conserve the linear momentum the gun recoils
When the mass of a moving object is doubled and its speed remains the same, its momentum also doubles. Momentum is directly proportional to mass, so doubling the mass will result in a doubling of the momentum regardless of the speed.
As a star shrinks, its angular speed typically increases due to the conservation of angular momentum. This means that as the star's radius decreases, its rotation rate speeds up in order to conserve the total angular momentum of the system.
Yes, momentum is conserved in the cannon-cannonball system. When the cannon fires the cannonball, the cannon moves in the opposite direction to conserve momentum. This is based on the principle of conservation of momentum in a closed system.
Increasing mass affects both angular and linear momentum differently. For linear momentum, doubling the mass doubles the momentum if velocity remains constant. For angular momentum, increasing mass without changing the distribution around the axis of rotation affects angular momentum due to rotational inertia. In simple terms, the rotational speed would likely decrease to conserve angular momentum.
It increases in order to conserve angular momentum.
Friciton slows down the spin of the ball. In order to conserve angular momentum, the ball begins to move in an arc of decreasing radius.
For a simple answer, we have to ignore air resistance. As the skydiver's downward momentum increases, the earth's upward momentum increases by an identical amount. The total momentum of the earth-skydiver system remains constant.
l886. it was a three-wheeler. several replicas survive as museum pieces. had flywheel drive to conserve momentum, a very modern idea.
Momentum of an object is its own property but it can be transferred by that object to any other object during their collision ( elastic or inelastic ) so as to conserve the total momentum of the system as demonstrated by the law of conservation of momentum. One of the examples of the transferring of momentum is the transfer of momentum and incident energy from photons of x rays to the loosely bound electrons in graphite target in Compton effect.
In an isolated system the total momentum of a system remains conserved. For example If you fire a bullet from Gun , bullet go forward with some linear momentum and in order to conserve the linear momentum the gun recoils