First resolve the vertical component of your equation with the formula: Fsinθ (In layman's terms, Force X Sine X anglethrown) This is your initial velocity. At maximum height, velocity is ALWAYS 0. So: Since: V^2 = U^2 + 2as Then: S=(V^2-U^2) / 2a Eg: If we threw a ball at 26ms with an angle of 64: 26sin64=23.36 S= We want to find this value U=23.36 V=0 A=9.81 T= We don't need to know this. S= (0^2 - 545.68^2) / 2x-9.81 S= -545.68 / -19.62 S= 27.8m So the maximum height would be 27.8m Remember, at maximum vertical height V is ALWAYS 0!!!
To find height in physics, you can use the equation: height initial velocity squared / (2 acceleration due to gravity). This equation is derived from the principles of kinematics and the laws of motion. By plugging in the values for initial velocity and acceleration due to gravity, you can calculate the height of an object at a certain point in time.
At the maximum height, the rock's final velocity will be 0 m/s. You can use the kinematic equation v_f = v_i + at to find the time it takes for the rock to reach its maximum height. Rearranging the equation to solve for time t, where a is the acceleration due to gravity, you can find the time it takes for the rock to reach its maximum height.
To determine the maximum height reached by an object launched with a given initial velocity, you can use the formula for projectile motion. The maximum height is reached when the vertical velocity of the object becomes zero. This can be calculated using the equation: Maximum height (initial velocity squared) / (2 acceleration due to gravity) By plugging in the values of the initial velocity and the acceleration due to gravity (which is approximately 9.81 m/s2 on Earth), you can find the maximum height reached by the object.
Multiply the height by 4. The equation to use is h=-16t2 + v0t + h0. Use whatever values you want for v0 and h0, and find the vertex of the parabola. Then double your value of v0, and find the vertex of your new parabola. It will be 4 times as high every time. By the way, to find the vertex, plug in v0/32 for t. Then solve for h.
To find the load in physics, you can use the formula: Load = Mass x Acceleration. Determine the mass of the object in question and the acceleration it is experiencing, then multiply these two values together to calculate the load.
To find height in physics, you can use the equation: height initial velocity squared / (2 acceleration due to gravity). This equation is derived from the principles of kinematics and the laws of motion. By plugging in the values for initial velocity and acceleration due to gravity, you can calculate the height of an object at a certain point in time.
body is projected with a velocity 3o m/s at an angle 30 degree with vertical find maximum height time of flight and range
To find the height of a binary tree, you can use a recursive algorithm that calculates the height of the left and right subtrees, and then returns the maximum height plus one. This process continues until the height of the entire tree is calculated.
Q1. Find the minimum and the maximum number of keys that a heap of height h can contain.
Take the derivative of the function.By plugging a value into the derivative, you can find the instantaneous velocity.By setting the derivative equal to zero and solving, you can find the maximums and/or minimums.Example:Find the instantaneous velocity at x = 3 and find the maximum height.f(x) = -x2 + 4f'(x) = -2xf'(3) = -2*3 = -6So the instantaneous velocity is -6.0 = -2x0 = xSo the maximum height occurs at x = 0f(0) = -02 + 4 = 4So the maximum height is 4.
At the maximum height, the rock's final velocity will be 0 m/s. You can use the kinematic equation v_f = v_i + at to find the time it takes for the rock to reach its maximum height. Rearranging the equation to solve for time t, where a is the acceleration due to gravity, you can find the time it takes for the rock to reach its maximum height.
It is the maximum of the z-coordinate - the third of the ordered triplet.
To determine the maximum height reached by an object launched with a given initial velocity, you can use the formula for projectile motion. The maximum height is reached when the vertical velocity of the object becomes zero. This can be calculated using the equation: Maximum height (initial velocity squared) / (2 acceleration due to gravity) By plugging in the values of the initial velocity and the acceleration due to gravity (which is approximately 9.81 m/s2 on Earth), you can find the maximum height reached by the object.
Multiply the height by 4. The equation to use is h=-16t2 + v0t + h0. Use whatever values you want for v0 and h0, and find the vertex of the parabola. Then double your value of v0, and find the vertex of your new parabola. It will be 4 times as high every time. By the way, to find the vertex, plug in v0/32 for t. Then solve for h.
To find the height of a binary search tree in Java, you can use a recursive method that calculates the height of the left and right subtrees and returns the maximum height. This can be implemented by defining a method that takes the root node of the tree as input and recursively calculates the height of the tree.
It is impossible unless the question asks you to find the length when given the volume and height and/or width.
better question what shape is it