Multiply the height by 4.
The equation to use is h=-16t2 + v0t + h0.
Use whatever values you want for v0 and h0, and find the vertex of the parabola. Then double your value of v0, and find the vertex of your new parabola. It will be 4 times as high every time.
By the way, to find the vertex, plug in v0/32 for t. Then solve for h.
To find the initial velocity of the kick, you can use the equation for projectile motion. The maximum height reached by the football is related to the initial vertical velocity component. By using trigonometric functions, you can determine the initial vertical velocity component and then calculate the initial velocity of the kick.
The initial velocity of the bullet can be obtained by using the kinematic equation for projectile motion. Assuming we neglect air resistance, the initial velocity of the bullet fired vertically upward from a gun can be calculated by setting the final velocity as 0 when it reaches the maximum height of 7000 ft. Using the equation v^2 = u^2 + 2as, where v is the final velocity (0 m/s), u is the initial velocity, a is the acceleration due to gravity, and s is the total displacement. Solve for u to find the initial velocity of the bullet.
As the ball travels up, its velocity decreases until it reaches a maximum height and then starts to fall back down due to gravity. The initial velocity of the ball will determine how high it goes before falling back down.
To have zero speed at the top, you need to throw the projectile with an initial velocity such that it reaches its maximum height at that point. This requires the initial velocity to be exactly equal to the velocity that would be attained due to gravity when the projectile falls from that height. The angle of projection should be such that the vertical component of the initial velocity cancels out the velocity due to gravity.
A model rocket reaches maximum velocity at the point where the thrust from the engine matches the drag from the air, or the point where the thrust goes to zero when the fuel burns out, whichever comes first.
To find the initial velocity of the kick, you can use the equation for projectile motion. The maximum height reached by the football is related to the initial vertical velocity component. By using trigonometric functions, you can determine the initial vertical velocity component and then calculate the initial velocity of the kick.
When a pendulum reaches its maximum elongation the velocity is zero and the acceleration is maximum
The initial velocity of the bullet can be obtained by using the kinematic equation for projectile motion. Assuming we neglect air resistance, the initial velocity of the bullet fired vertically upward from a gun can be calculated by setting the final velocity as 0 when it reaches the maximum height of 7000 ft. Using the equation v^2 = u^2 + 2as, where v is the final velocity (0 m/s), u is the initial velocity, a is the acceleration due to gravity, and s is the total displacement. Solve for u to find the initial velocity of the bullet.
when the object reaches maximum height, the velocity of the object is 0 m/s.It reaches maximum height when the gravity of the body has slowed its velocity to 0 m/s. If there is no gravity and there is no external force acting on it then it will never reach a maximum height as there wont be a negativeaccelerationdemonstrated by newtons first law.Where there is and you have the objects initial velocity then you can use :v^2 = u^2+2.a.sv = Velocity when it reaches Max. height so v = 0u = Initial Velocity (m/s)a = Retardation/ Negative Acceleration due to gravity, -9.80m/s ^2And then the unknown (s) is the displacement, or height above ground, and if everything else is in the right format it should be in metres.
As the ball travels up, its velocity decreases until it reaches a maximum height and then starts to fall back down due to gravity. The initial velocity of the ball will determine how high it goes before falling back down.
To have zero speed at the top, you need to throw the projectile with an initial velocity such that it reaches its maximum height at that point. This requires the initial velocity to be exactly equal to the velocity that would be attained due to gravity when the projectile falls from that height. The angle of projection should be such that the vertical component of the initial velocity cancels out the velocity due to gravity.
To find the time taken to acquire a certain velocity in an acceleration-time graph, locate the point on the graph where the velocity reaches the desired value. Then, find the corresponding time on the horizontal axis at that point. This time value represents the time taken to acquire the initial velocity.
When it's at its maximum height its speed will be zero.
A model rocket reaches maximum velocity at the point where the thrust from the engine matches the drag from the air, or the point where the thrust goes to zero when the fuel burns out, whichever comes first.
The final velocity of the object would be less than its initial velocity, as some of the kinetic energy has been converted to potential energy. The exact final velocity would depend on the specific amounts of energy involved and the characteristics of the system.
The object will fall freely under the influence of gravity. Its initial velocity will be zero, and it will accelerate downwards until it reaches the ground. The time taken for the object to fall and its final velocity can be calculated using kinematic equations.
It doesn't. If acceleration is zero, that just means that velocity isn'tchanging ... the motion is in a straight line at a constant speed.