*by reducing the weight or density of the falling object.
*By introducing resistance to the falling object in the form of flat light weighted object.
*giving parachute.
The sum of the kinetic and potential energies of a freely falling body is constant and equal to the total mechanical energy. This is a result of the conservation of energy principle, where the body's potential energy is converted into kinetic energy as it falls, keeping the total energy constant.
If the 'weight' of a body is the gravitational force between the body and the Earth, then as long as the body stays at about the same distance from the center of the Earth, its weight is constant, and has no connection with its motion.
When a body is falling freely, the only force acting on it is gravity. This force causes the body to accelerate downwards at a rate of 9.81 m/s^2 near the surface of the Earth.
A freely falling body exhibits uniform acceleration motion due to the force of gravity acting on it. This means that the body's speed increases by the same amount every second as it falls towards the Earth.
In a freely falling body, its velocity increases due to the acceleration caused by gravity. The acceleration is constant (9.8 m/s^2 on Earth), and the body's motion is only affected by gravity, not air resistance. The body's position changes continuously as it falls towards the ground.
A freely body is the body which is freely falling under the force of gravity i.e. an acceleration of 9.8 m/s2
The sum of the kinetic and potential energies of a freely falling body is constant and equal to the total mechanical energy. This is a result of the conservation of energy principle, where the body's potential energy is converted into kinetic energy as it falls, keeping the total energy constant.
9.8 m/s2
If the 'weight' of a body is the gravitational force between the body and the Earth, then as long as the body stays at about the same distance from the center of the Earth, its weight is constant, and has no connection with its motion.
When a body is falling freely, the only force acting on it is gravity. This force causes the body to accelerate downwards at a rate of 9.81 m/s^2 near the surface of the Earth.
None whatsoever.
Gravitational Force
a nswer
A freely falling body exhibits uniform acceleration motion due to the force of gravity acting on it. This means that the body's speed increases by the same amount every second as it falls towards the Earth.
The mutual attractive forces of gravity between the body and the Earth.
A freely falling body Planet going around the sun electron going around the nucleus
Freely falling body is a good example