An electron exerts a force on another charged particle through the electromagnetic force. This force arises due to the interaction of the electric fields surrounding the charged particles. Like charges repel each other, so electrons (which are negatively charged) repel other negatively charged particles.
The force that moving charged particles exert on one another is called the electromagnetic force. This force is responsible for the interaction between charged particles such as electrons and protons.
The space around a particle through which an electric charge can exert force is referred to as the electric field. This field exists at all points in space and its strength diminishes with distance from the charged particle according to an inverse square law. Other charged particles placed in this electric field will experience a force due to the interactions between their charges.
Magnetic fields exert a force on moving charged particles. This force is perpendicular to both the velocity of the particle and the magnetic field direction, causing the particles to follow a curved path. The strength of the force depends on the charge of the particle, its velocity, and the strength of the magnetic field.
A magnetic field alters the direction a charged particle is traveling. This is true if the charged particle is moving "across" and not "along" the magnetic lines of force of the field through which it is moving. The particle is said to be deflected when it (the particle) passes through magnetic field lines. The reason for the observed deflection is because a charged particle that is moving creates a magnetic field, and this field will react with the magnetic field through which it is moving. The result will be lateral deflection, and positively charged particles will be deflected one way and negatively charged particles will be deflected the other.
A charged object exerts an electric force on another charged object, either attracting or repelling it depending on the relative signs of the charges. This force is described by Coulomb's law, which states that the force is directly proportional to the product of the charges and inversely proportional to the square of the distance between them.
An electron exerts a force on another charged particle by creating an electric field around itself. This electric field interacts with the charge of the other particle, causing a force to be exerted between them. This force follows Coulomb's law, which describes the magnitude and direction of the force based on the charges and the distance between the particles.
The force that moving charged particles exert on one another is called the electromagnetic force. This force is responsible for the interaction between charged particles such as electrons and protons.
The space around a particle through which an electric charge can exert force is referred to as the electric field. This field exists at all points in space and its strength diminishes with distance from the charged particle according to an inverse square law. Other charged particles placed in this electric field will experience a force due to the interactions between their charges.
Magnetic fields exert a force on moving charged particles. This force is perpendicular to both the velocity of the particle and the magnetic field direction, causing the particles to follow a curved path. The strength of the force depends on the charge of the particle, its velocity, and the strength of the magnetic field.
Electrical energy is energy that's stored in charged particles within an electric field. Electric fields are simply areas surrounding a charged particle. In other words, charged particles create electric fields that exert force on other charged particles within the field. The electric field applies the force to the charged particle, causing it to move - in other words, do work.
A magnetic field alters the direction a charged particle is traveling. This is true if the charged particle is moving "across" and not "along" the magnetic lines of force of the field through which it is moving. The particle is said to be deflected when it (the particle) passes through magnetic field lines. The reason for the observed deflection is because a charged particle that is moving creates a magnetic field, and this field will react with the magnetic field through which it is moving. The result will be lateral deflection, and positively charged particles will be deflected one way and negatively charged particles will be deflected the other.
A charged object exerts an electric force on another charged object, either attracting or repelling it depending on the relative signs of the charges. This force is described by Coulomb's law, which states that the force is directly proportional to the product of the charges and inversely proportional to the square of the distance between them.
Charged particles exert an electric force on other charged particles in their vicinity. This force can either be attractive (between particles of opposite charge) or repulsive (between particles of the same charge).
The answer is an electrical field.
Charges exert a force on an object through the electric field that surrounds them. When a charged object is placed near another object with a different charge or grounded, the electric field interacts with the charges in the object, resulting in an attractive or repulsive force.
Charged objects do not have to physically touch each other in order to exert a force on each other. The force between charged objects can be exerted through electromagnetic fields that extend through space. This force is known as the electrostatic force.
The direction of an electric field is the direction of the force that the field would exert on a proton.. ___ The relationship of the direction of an electric field and the direction of force that the field would exert are the same. Let's look. Consider the humble electron, the carrier of the negative electrostatic force. The electric field around the electron can be said to "stand out around the electron" equally and in all directions. We need to form a mental picture, so let's try to do that. Think of the electron as a little ball floating in space. Now picture it with long, thin "needles" sticking out of it in all directions. Each needle is a line of electric force, and its direction is "out" or "away" from the center of the ball that is the electron. Got that picture? The negative electric force about any elementary charged particle is just like the picture we have of the electron and its electric field. The force acts "out" like that. In the case of a positively charged particle, the same model applies, except that positive and negative forces attract while two negative or two positive forces repel each other, just as is set down in the law of electrostatics. Simple and easy. Note that electric and magnetic fields have a little different way of interacting, and this question doesn't cover that.