answersLogoWhite

0

As wavelength shorten I believe the pitch will become higher

User Avatar

Wiki User

13y ago

What else can I help you with?

Continue Learning about Physics
Related Questions

How does wavelength and frequency change with speed?

As speed increases, the wavelength and frequency of a wave are inversely proportional. This means that as speed increases, the wavelength shortens, and the frequency increases. This relationship is described by the equation: speed = frequency x wavelength.


How does wavelength change if the frequency of a wave is multiplied by 1.5?

If the frequency is multiplied by 1.5, the wavelength will decrease by a factor of 2/3. This is because wavelength and frequency are inversely proportional to each other in a wave's speed equation (speed = wavelength × frequency).


What happens to the wavelength when you increase the rate of the vibration?

Wavelength and frequency have an inverse relationship. c = lambda x f, so f = c/lambda, where lambda is wavelength, f is frequency, and c is the speed of light in a vacuum. Therefore, when the frequency increases, the wavelength shortens.


What happens to the wavelength of a wave that slows down while retaining its original frequency?

As the basic formula of all types of waves is (Velocity of a wave=the product of the wavelength of it and its frequency). In this case, frequency of a certain wave is constant and the velocity is decreasing. And as the velocity is directly proportional to the wavelength, the wavelength of the wave shortens as a result.


When you changethe wavelength do you change the frequency?

No, changing the wavelength of a wave does not change its frequency. The frequency of a wave is determined by the source of the wave and remains constant regardless of changes in wavelength.


What happens to the wavelength when you increase the rate of vibration?

Wavelength and frequency have an inverse relationship. c = lambda x f, so f = c/lambda, where lambda is wavelength, f is frequency, and c is the speed of light in a vacuum. Therefore, when the frequency increases, the wavelength shortens.


How the wavelength traveling with the same speed would change if the frequency of the waves increase?

The speed of a wave is equal to the wavelength divided by the frequency (speed = wavelength/frequency). So if the frequency of the wave increases, the wavelength will decrease.


Can you change the wavelength of waves in a ripple tank?

Yes, you can change the wavelength of waves in a ripple tank by adjusting the frequency of the wave generator. Increasing the frequency will decrease the wavelength, while decreasing the frequency will increase the wavelength of the waves produced in the tank.


How does wavelength change when frequency is constant?

the wavelength changes when the frequency changes if the wavelengths are smaller and thinner then the frequency is high, when the frequency is slow then the wavelengths is larger and wider. if the frequency is constant then the wavelength is a normal size


How wavelength of waves traveling with the same speed would change if the frequency of waves increase?

The speed of a wave is equal to the wavelength divided by the frequency (speed = wavelength/frequency). So if the frequency of the wave increases, the wavelength will decrease.


How would the wavelength of waves traveling with the same speed change if the frequency of the waves increase?

The speed of a wave is equal to the wavelength divided by the frequency (speed = wavelength/frequency). So if the frequency of the wave increases, the wavelength will decrease.


How the wavelength of waves traveling with the same speed would change if the frequency of the waves increase?

The speed of a wave is equal to the wavelength divided by the frequency (speed = wavelength/frequency). So if the frequency of the wave increases, the wavelength will decrease.