i love alien people?
No, the inertia of a bowling ball is greater than that of a golf ball. Inertia is directly related to an object's mass, so the heavier the object, the greater its inertia. The mass of a bowling ball is much larger than that of a golf ball, resulting in greater inertia.
A bowling ball has more inertia than a basketball because inertia is directly proportional to an object's mass. The larger mass of the bowling ball means that it will be more resistant to changes in its state of motion compared to the basketball.
B. A bowling ball has the greatest inertia because it has the most mass compared to the other objects listed. Inertia is directly related to an object's mass, with greater mass resulting in greater inertia.
No, velocity does not affect an object's inertia. Inertia is the property of an object to resist changes in its state of motion, regardless of its velocity.
This is an example of inertia, specifically the difference in inertia between the two objects due to their mass. The bowling ball has more mass, so it has more inertia and requires more force to stop its motion compared to the ping pong ball.
No, the inertia of a bowling ball is greater than the inertia of a basketball due to the bowling ball's larger mass. Inertia is the resistance of an object to changes in its state of motion, and a heavier object like the bowling ball requires more force to accelerate or decelerate compared to the basketball.
No, the inertia of a bowling ball is greater than that of a golf ball. Inertia is directly related to an object's mass, so the heavier the object, the greater its inertia. The mass of a bowling ball is much larger than that of a golf ball, resulting in greater inertia.
Since the lightest tenpin bowling ball is currently 6 pounds and a table tennis ball is not even an ounce, the tenpin bowling ball is heavier.
A bowling ball has more inertia than a basketball because inertia is directly proportional to an object's mass. The larger mass of the bowling ball means that it will be more resistant to changes in its state of motion compared to the basketball.
B. A bowling ball has the greatest inertia because it has the most mass compared to the other objects listed. Inertia is directly related to an object's mass, with greater mass resulting in greater inertia.
Inertia and gravity cause a bowling ball to stop on earth.
Because there both very heavy
Inertia is the property of an object to resist changes in its state of motion, and it depends on the object's mass rather than its speed. Therefore, if the fast bowling ball and the slow bowling ball have the same mass, they have the same inertia regardless of their speeds. However, the fast bowling ball may have more momentum due to its higher velocity, but inertia itself is solely a function of mass.
cat
No, a bowling ball (or any other object) has exactly the same inertial mass no matter where it is (its actual inertia will, of course, depend upon its velocity as well as its inertial mass). Weight changes on the moon, but inertia doesn't.
Most likely the bowling ball. According to the laws of physics, an object with more inertia accelerates slower but is harder to stop. The bowling ball accelerates ...
Among a bowling ball, a planet, a car, and a train, the planet has the greatest inertia. Inertia depends on an object's mass, and planets have significantly more mass than the other items listed, meaning they resist changes to their motion more than the others do. While a bowling ball is heavy, it pales in comparison to the mass of a planet.