answersLogoWhite

0

In general, the longer the wire the greater the resistance. The only time that this is not so is when the wire is a superconductor, in which case the resistance is always zero.

User Avatar

Wiki User

14y ago

What else can I help you with?

Continue Learning about Physics

How Does the length of the wire affect its resistance?

As the length of the wire increases, the resistance also increases. This is because a longer wire offers more opposition to the flow of electrical current compared to a shorter wire. Resistance is directly proportional to length, so doubling the length of the wire will double its resistance.


What three things affect the resistance in a wire?

The three main factors that affect the resistance in a wire are the material of the wire (different materials have different resistivities), the length of the wire (longer wires have higher resistance), and the cross-sectional area of the wire (thicker wires have lower resistance).


What three factors affect the resistance in a circuit?

The three main factors that affect resistance in a circuit are the material the wire is made of, the length of the wire, and the cross-sectional area of the wire. Other factors, such as temperature and temperature coefficient of resistance, can also impact resistance.


What are factors that affect resistance of electricity?

Factors that affect resistance of electricity include the type of material the wire is made of (e.g. copper vs. aluminum), the length of the wire (longer wires have higher resistance), and the cross-sectional area of the wire (thicker wires have lower resistance). Temperature also affects resistance, with higher temperatures typically leading to higher resistance.


Why bends in a wire do no affect its resistance?

Bends in a wire do not affect its resistance because the cross-sectional area and length of the wire remain the same regardless of the bends. Resistance is determined by these two factors, according to the formula R = ρ*(L/A), where ρ is the resistivity of the material, L is the length of the wire, and A is the cross-sectional area. As long as these parameters remain constant, the resistance of the wire will stay the same.

Related Questions

How Does the length of the wire affect its resistance?

As the length of the wire increases, the resistance also increases. This is because a longer wire offers more opposition to the flow of electrical current compared to a shorter wire. Resistance is directly proportional to length, so doubling the length of the wire will double its resistance.


What three things affect the resistance in a wire?

The three main factors that affect the resistance in a wire are the material of the wire (different materials have different resistivities), the length of the wire (longer wires have higher resistance), and the cross-sectional area of the wire (thicker wires have lower resistance).


What three factors affect the resistance in a circuit?

The three main factors that affect resistance in a circuit are the material the wire is made of, the length of the wire, and the cross-sectional area of the wire. Other factors, such as temperature and temperature coefficient of resistance, can also impact resistance.


What are factors that affect resistance of electricity?

Factors that affect resistance of electricity include the type of material the wire is made of (e.g. copper vs. aluminum), the length of the wire (longer wires have higher resistance), and the cross-sectional area of the wire (thicker wires have lower resistance). Temperature also affects resistance, with higher temperatures typically leading to higher resistance.


Why bends in a wire do no affect its resistance?

Bends in a wire do not affect its resistance because the cross-sectional area and length of the wire remain the same regardless of the bends. Resistance is determined by these two factors, according to the formula R = ρ*(L/A), where ρ is the resistivity of the material, L is the length of the wire, and A is the cross-sectional area. As long as these parameters remain constant, the resistance of the wire will stay the same.


What increases resistance in a wire?

Current (measured by an ammeter) and Voltage (measured by a voltmeter) R= V/I Resistance equals voltage divided by current ================================ That's wonderful, but the measurement doesn't "affect" the resistance of the wire. The factors that do "affect" the resistance ... i.e. determine what the resistance will be ... are -- substance of which the wire is composed -- dimensions of the wire: thickness and length.


Three ways which resistance of a wire can be increased?

You can increase the resistance in the wire, by doing any of the following:Increase the length of the wire.Reduce the wire's cross-section.Change to a material that has a greater resistivity (specific resistance).You can increase the resistance in the wire, by doing any of the following:Increase the length of the wire.Reduce the wire's cross-section.Change to a material that has a greater resistivity (specific resistance).You can increase the resistance in the wire, by doing any of the following:Increase the length of the wire.Reduce the wire's cross-section.Change to a material that has a greater resistivity (specific resistance).You can increase the resistance in the wire, by doing any of the following:Increase the length of the wire.Reduce the wire's cross-section.Change to a material that has a greater resistivity (specific resistance).


What are 4 things that influence resistance in a wire?

The four main factors that influence resistance in a wire are the material of the wire, the length of the wire, the cross-sectional area of the wire, and the temperature of the wire. These factors determine how easily electrons can flow through the wire and affect its overall resistance.


If the length of a copper wire is reduced by half then the resistance of the wire will be?

The resistance of a wire is directly proportional to its length, so if the length is reduced by half, the resistance will also be reduced by half.


How does the resistance of a wire vary with its length?

The resistance of a wire is directly proportional to its length. This means that as the length of the wire increases, the resistance also increases. This relationship is described by the formula R = ρ * (L/A), where R is resistance, ρ is the resistivity of the material, L is the length of the wire, and A is its cross-sectional area.


Why does the length of wire affect the resistance?

the longer the wire, the more mass the electrons have to travel thru. the more they have to travel thru, the more resistance. (and the resultant heat) the more electrically conductive the wire, the less resistance.


What doesn't affect the resistance of a uniform circular copper wire?

Is either; A. the length of the wire B. the diameter of the wire c. the location of the wire D. the temperature of the wire