The force of gravity attracts objects to the centre of the earth. It does not let objects fly out of its pull.
The force of gravity acting on an object is directly proportional to its mass. This means that the larger the object, the greater the force of gravity acting upon it.
The force of gravity can affect the weight of an object. This force pulls objects toward the center of the Earth and determines their weight.
Friction and acceleration due to gravity do not directly affect the weight of an object. Weight is determined by the gravitational force acting on the object, which is independent of these factors. However, friction can affect the apparent weight of an object on a surface by opposing the force of gravity.
Increasing the mass of a protective container does not affect the force of gravity acting on it. The force of gravity is determined by the mass of the planet or celestial body the container is on and the distance from the center of that body. The mass of an object does not affect the force of gravity acting on it.
The factors that affect the way gravity acts on an object include the mass of the object and the distance between the object and the source of gravity (such as the Earth). Objects with more mass experience a stronger gravitational force, while objects that are farther apart experience a weaker gravitational force.
The force of gravity acting on an object is directly proportional to its mass. This means that the larger the object, the greater the force of gravity acting upon it.
The force of gravity can affect the weight of an object. This force pulls objects toward the center of the Earth and determines their weight.
Friction and acceleration due to gravity do not directly affect the weight of an object. Weight is determined by the gravitational force acting on the object, which is independent of these factors. However, friction can affect the apparent weight of an object on a surface by opposing the force of gravity.
Acceleration due to gravity pulls an object closer to the mass which exerts the force. Masses are attracted to masses. Due to newton's third law, if an object is on a surface, the opposite reaction to gravity would be normal force.
Increasing the mass of a protective container does not affect the force of gravity acting on it. The force of gravity is determined by the mass of the planet or celestial body the container is on and the distance from the center of that body. The mass of an object does not affect the force of gravity acting on it.
The factors that affect the way gravity acts on an object include the mass of the object and the distance between the object and the source of gravity (such as the Earth). Objects with more mass experience a stronger gravitational force, while objects that are farther apart experience a weaker gravitational force.
Gravity has no effect on the mass of an object. However, an object's weight is the measurement of gravitational force on the object. The gravitational force on the moon for example is ~ 1/6 of that on Earth. A 300 kg object would weigh 3000N (Newtons) on the Earth but only weigh 500 N on the Moon but its mass would still be 300 kg on the Moon and on the Earth.
weight is the force gravity exerts on an object. Therefore, it means that the greater weight an object has, the greater force is needed to move it in the opposite direction.
The weight of an object is the force of gravity.
When the only force on an object is the force of gravity,we say that the object is in "free fall".
The factors that affect the ability of gravity to do work include the distance the object falls, the mass of the object, and the presence of other forces that may oppose gravity, such as friction or air resistance. The work done by gravity is determined by the height through which the object falls and the force of gravity acting on the object.
When the only force on an object is the force of gravity,we say that the object is in "free fall".