Aerodynamic drag, depends on size, surface texture and shape.
The force behind it = mass * acceleration due to gravity
Air resistance is directly proportional to the surface area of an object. As the surface area of an object increases, there is more contact with air molecules, resulting in greater air resistance. This resistance can affect the speed and motion of the object.
The surface area of an object does not directly affect the force of gravity acting on it. Gravity depends on the mass of the object and the distance to other massive objects, like planets. However, a larger surface area may result in more air resistance when falling, which can affect how quickly the object accelerates due to gravity.
surface area
The factors that affect the speed of an object in free fall with air resistance are the object's mass, the surface area of the object, the density of the air, and the gravitational force acting on the object.
Without atmospheric drag, all free falling objects near earth's surface will have the same acceleration. But because of friction with the air (air resistance), the velocity of objects due to that acceleration is limited. The actual velocity is dependent on the surface area of the object relative to its mass. The principle of the parachute is to increase the surface area of a falling object with respect to its mass.
Mass does not directly affect surface area. Surface area is a measure of the total area of an object's external surfaces, while mass is a measure of the amount of matter in an object. However, as the mass of an object increases, its volume typically increases as well, which can indirectly affect its surface area if the shape remains constant. Objects with larger masses may have larger surface areas if their volume increases proportionally.
Air resistance is directly proportional to the surface area of an object. As the surface area of an object increases, there is more contact with air molecules, resulting in greater air resistance. This resistance can affect the speed and motion of the object.
The surface area of an object does not directly affect the force of gravity acting on it. Gravity depends on the mass of the object and the distance to other massive objects, like planets. However, a larger surface area may result in more air resistance when falling, which can affect how quickly the object accelerates due to gravity.
No, it doesn't, the only important thing is the force perpendicular to the surface (weight) and friction coefficient.
surface area
Surface area refers to the total area that covers the surface of an object or structure. To decrease surface area, you can reduce the dimensions of the object or change its shape to be more compact. To increase surface area, you can add extensions, rough textures, or indentations to the object's surface.
The factors that affect the speed of an object in free fall with air resistance are the object's mass, the surface area of the object, the density of the air, and the gravitational force acting on the object.
Without atmospheric drag, all free falling objects near earth's surface will have the same acceleration. But because of friction with the air (air resistance), the velocity of objects due to that acceleration is limited. The actual velocity is dependent on the surface area of the object relative to its mass. The principle of the parachute is to increase the surface area of a falling object with respect to its mass.
Area is usually pertaining to the area of a 2d object but surface is 3d object
Yes. Think of a glider, and then imagine folding its wings in half.
surface area
Factors that affect fluid friction include the viscosity of the fluid, the surface area of the object moving through the fluid, and the speed at which the object is moving. Other factors such as the roughness of the object's surface and the temperature of the fluid can also impact fluid friction.