answersLogoWhite

0

For any wave, the product of (wavelength) x (frequency) is always the same number ...

the wave's speed.

So, as long as the speed stays the same, neither wavelength nor frequerncy

can change without the other one also changing.

User Avatar

Wiki User

13y ago

What else can I help you with?

Continue Learning about Physics

How does the wavelength of waves traveling with the same speed change is the frequency of the waves increase?

As frequency increases, the wavelength decreases for waves traveling at the same speed. This relationship is defined by the formula: wavelength = speed of light / frequency. So, if the frequency increases, the wavelength must decrease to maintain a constant speed.


How the wavelength of waves traviling with the same speed would change if the frequency of the waves increase?

Speed is (Length/Time). Wavelength is (Length), and Frequency is (1/Time).Speed = (Wavelength)*(Frequency). With a constant speed, Wavelength and Frequency are inversely proportional to each other. So if one increases, the other decreases.


How is the frequency of a wave related to its wavelength?

wavelength I will call lambda, frequency I will call f If f and lambda are the same then the velocities of the waves would be the same becuase v= lambda*f You know nothing about their phase angles or the amplitude of the waves though.


What Wave travels at a constant speed how does the frequency change if the wavelength is reduced by factor of 3?

A wave traveling at a constant speed will have its frequency remain the same regardless of the change in wavelength. The wavelength and frequency of a wave are inversely proportional, meaning if the wavelength is reduced by a factor of 3, the frequency would increase by a factor of 3 to maintain a constant speed.


If we change the wavelength of a wave and make it shorter but with the same amplitude what would increase?

If you shorten the wavelength of a wave while keeping the amplitude constant, the frequency of the wave will increase. This is because wavelength and frequency are inversely proportional in a wave (frequency = speed of wave / wavelength).

Related Questions

How the wavelength traveling with the same speed would change if the frequency of the waves increase?

The speed of a wave is equal to the wavelength divided by the frequency (speed = wavelength/frequency). So if the frequency of the wave increases, the wavelength will decrease.


How would the wavelength of waves traveling with the same speed change if the frequency of the waves increase?

The speed of a wave is equal to the wavelength divided by the frequency (speed = wavelength/frequency). So if the frequency of the wave increases, the wavelength will decrease.


How wavelength of waves traveling with the same speed would change if the frequency of waves increase?

The speed of a wave is equal to the wavelength divided by the frequency (speed = wavelength/frequency). So if the frequency of the wave increases, the wavelength will decrease.


How the wavelength of waves traveling with the same speed would change if the frequency of the waves increase?

The speed of a wave is equal to the wavelength divided by the frequency (speed = wavelength/frequency). So if the frequency of the wave increases, the wavelength will decrease.


How wavelength of waves traveling with the same speed would change if the frequency of the Waves increases?

The speed of a wave is equal to the wavelength divided by the frequency (speed = wavelength/frequency). So if the frequency of the wave increases, the wavelength will decrease.


How does the wavelength of waves traveling with the same speed change is the frequency of the waves increase?

As frequency increases, the wavelength decreases for waves traveling at the same speed. This relationship is defined by the formula: wavelength = speed of light / frequency. So, if the frequency increases, the wavelength must decrease to maintain a constant speed.


How would the wavelength of a wave change if the speed of the wave increased but not the frequency?

The wavelength would increase by the same proportion.


How the wavelength of waves traviling with the same speed would change if the frequency of the waves increase?

Speed is (Length/Time). Wavelength is (Length), and Frequency is (1/Time).Speed = (Wavelength)*(Frequency). With a constant speed, Wavelength and Frequency are inversely proportional to each other. So if one increases, the other decreases.


Is electromagnetic spectrum and frequency spectrum same?

Electromagnetic waves have an associated frequency and wavelength. They are related by c = λν, where c is the speed of light, λ is the wavelength, and ν is the frequency. All electromagnetic waves travel at the speed of light. A change in frequency results in a change in wavelength (as required by the given equation). In short, yes. They're the same.


How is the frequency of a wave related to its wavelength?

wavelength I will call lambda, frequency I will call f If f and lambda are the same then the velocities of the waves would be the same becuase v= lambda*f You know nothing about their phase angles or the amplitude of the waves though.


What Wave travels at a constant speed how does the frequency change if the wavelength is reduced by factor of 3?

A wave traveling at a constant speed will have its frequency remain the same regardless of the change in wavelength. The wavelength and frequency of a wave are inversely proportional, meaning if the wavelength is reduced by a factor of 3, the frequency would increase by a factor of 3 to maintain a constant speed.


If we change the wavelength of a wave and make it shorter but with the same amplitude what would increase?

If you shorten the wavelength of a wave while keeping the amplitude constant, the frequency of the wave will increase. This is because wavelength and frequency are inversely proportional in a wave (frequency = speed of wave / wavelength).