During the relative refractory period, the threshold for excitation is increased compared to the resting threshold. This is because the membrane potential is closer to its resting state, making it more difficult to depolarize the cell and generate an action potential. It requires a stronger stimulus to overcome this increased threshold and trigger another action potential.
-The effective refractory period is the time in which the cell is incapable of responding to a second stimulus between the phases of 0-3.5, while the relative refractory period is the time in which the cell is making preparations to receive stimulus between phase 3.5-4.
The relative refractory period of the T wave represents a vulnerable period in the cardiac cycle during which a premature beat can trigger an arrhythmia, such as Torsades de Pointes. This period occurs during the repolarization phase, when the myocardium is in a state of partial recovery but not fully refractory.
In absolute refractory period, none of channels are reconfigured, so that second active potential cannot be generated no matter how large the stimulus current is applied to the neuron. In contrast, in relative refractory period, some but not all of channels are reconfigured, another action potential can be generated but only by a greater stimulus current thatn that originally needed.
The relative refractory period is the phase of the cardiac action potential during which a stronger-than-usual stimulus is required to elicit another action potential. It occurs immediately following the absolute refractory period and allows for the heart muscle to be able to respond to a second, stronger stimulus after the initial action potential.
During the refractory period, the inactivation of voltage-gated sodium channels prevents the generation of a new action potential. This inactivation prevents the cell from firing another action potential immediately after one has just occurred. The refractory period also allows time for the ion concentrations in the cell to return to their resting state, ensuring proper signaling.
The threshold may increase until a certain point in which the refractory period is so short that it will not allow for stimulus. Toby G Attending EMT-P school.
The period of relative refractory period is the time after an action potential during which a strong stimulus is required to generate a new action potential. This is because the membrane potential is hyperpolarized, making it more difficult to reach the threshold for firing another action potential.
The relative refractory period is the time during which the generation of an action potential is impossible no matter the strength of the stimulus
During the action potential process, the absolute refractory period is when the neuron cannot respond to any stimulus, while the relative refractory period is when it can respond to a stronger stimulus. The absolute refractory period comes before the relative refractory period in the action potential process.
-The effective refractory period is the time in which the cell is incapable of responding to a second stimulus between the phases of 0-3.5, while the relative refractory period is the time in which the cell is making preparations to receive stimulus between phase 3.5-4.
The relative refractory period of the T wave represents a vulnerable period in the cardiac cycle during which a premature beat can trigger an arrhythmia, such as Torsades de Pointes. This period occurs during the repolarization phase, when the myocardium is in a state of partial recovery but not fully refractory.
The period following the absolute refractory period is where a second action potential can be initiated by a larger than normal stimulus. This phase is known as the relative refractory period.
The two events that render a segment of an axon temporarily insensitive to another stimulus are the absolute refractory period and the relative refractory period. During the absolute refractory period, the axon cannot respond to any stimulus regardless of strength, while during the relative refractory period, the axon can only respond to a stronger-than-normal stimulus.
During the relative refractory period, some voltage-gated potassium channels are still open, causing an outward flow of potassium ions. This outward flow of potassium ions opposes depolarization, making it more difficult to reach the threshold for generating a second action potential. Additionally, some sodium channels may still be inactivated, further limiting the ability to generate another action potential.
One might find how the threshold will change by inquiring the mind of a scientist at ones local college. Another way to find the answer to this question would be to research it in books at ones local library.
In absolute refractory period, none of channels are reconfigured, so that second active potential cannot be generated no matter how large the stimulus current is applied to the neuron. In contrast, in relative refractory period, some but not all of channels are reconfigured, another action potential can be generated but only by a greater stimulus current thatn that originally needed.
Absolute Refractory Period:It is the interval during which a second action potential absolutely cannot be initiated, no matter how large a stimulus is applied.ORAfter repolarization there is a period during which a second action potential cannot be initiated, no matter how large a stimulus current is applied to the neuron. This is called the absolute refractory period, and it is followed by a relative refractory period, during which another action potential can be generated