answersLogoWhite

0

w=hf

w-work funtion

h-constant

f-threshold frequency

the work funtion is the minimum energy required to remove the electrons on the metal

User Avatar

Wiki User

13y ago

What else can I help you with?

Continue Learning about Physics

How is the threshold frequency related to work function?

The threshold frequency is the minimum frequency of light required to eject electrons from a metal surface (photoelectric effect). The work function is the minimum energy needed to remove an electron from the metal surface. The threshold frequency is directly related to the work function through the equation E = hf, where E is the energy, h is Planck's constant, and f is the frequency.


What is the difference between work function and threshold frequency?

The threshold frequency is the minimum frequency of radiation required to raise the potential energy of the most energetic electrons in a metal to zero, therefore giving the free electron (once emitted) a velocity of zero. The work function of a metal surface is the energy required to remove the most energetic electron from it. Each metal has a different work function, with the negative of this the maximum potential of the de-localised electrons in the metal. W=hf0 The formula: Kmax = hf - W (in Joules) gives the maximum kinetic energy of the electron. As h is Planck's constant, and f is the frequency provided to the metal (ie. frequency of the electromagnetic wave that had irradiated the metal), and W is the Work Function of the metal, if the frequency provided to the metal is the threshold frequency, then the electron has kinetic energy of zero. However, if more than the threshold frequency is provided, the electron will have a kinetic energy > 0. I hope that's explained okay! Bec


Why for a particular metal electrons are emitted only when the frequency of the incident radiation is greater than a certain value?

Electrons are emitted from a metal surface when the energy of the incident photons is great enough to overcome the work function of the metal. This minimum energy required is equivalent to a certain threshold frequency, known as the threshold frequency. Electrons can only be emitted when the frequency of the incident radiation is greater than this threshold frequency because lower frequency photons do not possess enough energy to overcome the work function and release electrons from the metal surface.


What is threshold frequency in photoelectric effect?

Threshold frequency refers to the minimum frequency of incident light required to eject electrons from the surface of a metal in the photoelectric effect. Electrons will only be emitted if the frequency of light is equal to or greater than the threshold frequency, as lower frequencies do not possess sufficient energy to overcome the work function of the metal.


What is threshold frequency?

Threshold frequency is the minimum frequency of light required to eject electrons from a metal surface in the photoelectric effect. Below this frequency, no electrons are emitted regardless of intensity. It is a characteristic property of each metal and is used to determine the work function of the metal.

Related Questions

How is the threshold frequency related to work function?

The threshold frequency is the minimum frequency of light required to eject electrons from a metal surface (photoelectric effect). The work function is the minimum energy needed to remove an electron from the metal surface. The threshold frequency is directly related to the work function through the equation E = hf, where E is the energy, h is Planck's constant, and f is the frequency.


What is the threshold frequency in a photoelectric experiment is most closely related to?

The work function of the photoemissive metal.


What is the difference between work function and threshold frequency?

The threshold frequency is the minimum frequency of radiation required to raise the potential energy of the most energetic electrons in a metal to zero, therefore giving the free electron (once emitted) a velocity of zero. The work function of a metal surface is the energy required to remove the most energetic electron from it. Each metal has a different work function, with the negative of this the maximum potential of the de-localised electrons in the metal. W=hf0 The formula: Kmax = hf - W (in Joules) gives the maximum kinetic energy of the electron. As h is Planck's constant, and f is the frequency provided to the metal (ie. frequency of the electromagnetic wave that had irradiated the metal), and W is the Work Function of the metal, if the frequency provided to the metal is the threshold frequency, then the electron has kinetic energy of zero. However, if more than the threshold frequency is provided, the electron will have a kinetic energy > 0. I hope that's explained okay! Bec


How do you calculate the threshold frequency for a given material?

The threshold frequency for a material can be calculated by dividing the work function of the material by Planck's constant. The work function is the minimum amount of energy needed to release an electron from the material's surface. Planck's constant is a fundamental constant in quantum mechanics. By dividing these two values, you can determine the threshold frequency at which the material will emit electrons when exposed to light.


Why for a particular metal electrons are emitted only when the frequency of the incident radiation is greater than a certain value?

Electrons are emitted from a metal surface when the energy of the incident photons is great enough to overcome the work function of the metal. This minimum energy required is equivalent to a certain threshold frequency, known as the threshold frequency. Electrons can only be emitted when the frequency of the incident radiation is greater than this threshold frequency because lower frequency photons do not possess enough energy to overcome the work function and release electrons from the metal surface.


What is threshold frequency in photoelectric effect?

Threshold frequency refers to the minimum frequency of incident light required to eject electrons from the surface of a metal in the photoelectric effect. Electrons will only be emitted if the frequency of light is equal to or greater than the threshold frequency, as lower frequencies do not possess sufficient energy to overcome the work function of the metal.


What is threshold frequency?

Threshold frequency is the minimum frequency of light required to eject electrons from a metal surface in the photoelectric effect. Below this frequency, no electrons are emitted regardless of intensity. It is a characteristic property of each metal and is used to determine the work function of the metal.


How to Calculate the work function?

work function = planck's constant x threshold frequency w=h(ft) it also equals the energy(eV) Planck's constant(h) = 6.626 x 10-34


How did Einstein used Plank' theory to explain the existence of threshold frequency?

Einstein used Planck's theory of quantization to explain the photoelectric effect by proposing that light is quantized into packets of energy called photons. These photons have energy proportional to their frequency, and when light with frequency below the threshold frequency interacts with a metal surface, no electrons are emitted. Above the threshold frequency, each photon can transfer enough energy to overcome the work function of the metal, causing electrons to be emitted.


Is is true that the frequency of photons must be larger than a certain minimum value in order to eject electrons from the metal?

Yes, that is true. This minimum frequency is called the threshold frequency and is determined by the work function of the material. Photons with frequencies lower than the threshold frequency do not carry enough energy to eject electrons from the metal surface, even if the intensity of light is high.


What is the thresh hold frequency of cesium?

The function of a photoelectric material is the energy that a photon of light must possess to just expel an electron from the surface of a material. The work function of cesium is 3.42 x 10^-19 Joules.Ê


What is the equation for the work function of metals and how does it relate to the emission of electrons from a metal surface?

The equation for the work function of metals is given by the formula: Work Function Planck's constant x Frequency of incident light. The work function represents the minimum amount of energy needed to remove an electron from the surface of a metal. When light with a frequency higher than the work function strikes the metal surface, it can transfer enough energy to the electrons, causing them to be emitted from the metal surface.