answersLogoWhite

0

It's the frequency at which each photon has the amount of energy required

to separate an electron from an atom in the target substance.

User Avatar

Wiki User

12y ago

What else can I help you with?

Continue Learning about Physics

How does photoelectric effect take place below threshold frequency?

It doesn't, and that's the whole big mysterious fact about the photoelectric effect that was standing Physics on its ear about 100 years ago. It doesn't matter how bright the light is, there's no photoelectric effect if the light is below the threshold frequency. And if it's above the threshold frequency, it doesn't matter how dim the light is, those electrons come streaming off of the surface of the target.


What is the frequency in photoelectric effect?

In the photoelectric effect, the frequency of incident light determines the energy of the ejected electrons from a material. Electrons are only emitted from the material when the frequency of the incident light is greater than the threshold frequency, which is unique to each material.


What happens to electrons if photon frequency is below threshold?

If the photon frequency is below the threshold frequency, the electrons do not have enough energy to be emitted from the material's surface, and no photoelectric effect occurs. The electrons will not be ejected and will remain bound to the material.


Does photoelectric effect take place below threshold frequency?

No, the photoelectric effect only occurs when the frequency of incident light is equal to or greater than the threshold frequency. Below the threshold frequency, photons do not possess enough energy to eject electrons from a material.


Can photoelectric effect be observed for all metals under same condition of incident light?

no , it cannot be observed in same conditions of incident light because, the threshold energy will be different for different metals.so in that particular threshold energy only the photoelectric effect for that metal can be observed.....

Related Questions

If the frequency of light is greater than the threshold frequency will photoelectric effect starts?

Yes - that's how it works.


How does photoelectric effect take place below threshold frequency?

It doesn't, and that's the whole big mysterious fact about the photoelectric effect that was standing Physics on its ear about 100 years ago. It doesn't matter how bright the light is, there's no photoelectric effect if the light is below the threshold frequency. And if it's above the threshold frequency, it doesn't matter how dim the light is, those electrons come streaming off of the surface of the target.


What is the frequency in photoelectric effect?

In the photoelectric effect, the frequency of incident light determines the energy of the ejected electrons from a material. Electrons are only emitted from the material when the frequency of the incident light is greater than the threshold frequency, which is unique to each material.


What is the threshold frequency of cesium?

The threshold frequency of cesium is approximately 3.3 x 10^14 Hz. This is the minimum frequency of electromagnetic radiation required to eject electrons from the surface of cesium via the photoelectric effect.


What happens to electrons if photon frequency is below threshold?

If the photon frequency is below the threshold frequency, the electrons do not have enough energy to be emitted from the material's surface, and no photoelectric effect occurs. The electrons will not be ejected and will remain bound to the material.


Does photoelectric effect take place below threshold frequency?

No, the photoelectric effect only occurs when the frequency of incident light is equal to or greater than the threshold frequency. Below the threshold frequency, photons do not possess enough energy to eject electrons from a material.


What is the thresh hold frequency of cesium?

The function of a photoelectric material is the energy that a photon of light must possess to just expel an electron from the surface of a material. The work function of cesium is 3.42 x 10^-19 Joules.Ê


In the Photoelectric effect after the threshold frequency what effect does the increased frequency have on the photocurrent If you assume the Intensity of the source to be constant?

The increased frequency increases the kinetic energy of the single electron ejected. Remember that the incident light releases a single electron when the threashod frequency is reached


Can photoelectric effect be observed for all metals under same condition of incident light?

no , it cannot be observed in same conditions of incident light because, the threshold energy will be different for different metals.so in that particular threshold energy only the photoelectric effect for that metal can be observed.....


Effect of intensity?

The photoelectric current is directly proportional to intensity.It also depends upon frequency, but frequency more than "THRESHOLD FREQUENCY" does not effect the current.The no. of electrons emitted per second by a photo-sensitive surface is directly proportional to the intensity of the incident radiations.So,the photoelectric current depends upon the intensity of the incident radiations.


How is the threshold frequency related to work function?

The threshold frequency is the minimum frequency of light required to eject electrons from a metal surface (photoelectric effect). The work function is the minimum energy needed to remove an electron from the metal surface. The threshold frequency is directly related to the work function through the equation E = hf, where E is the energy, h is Planck's constant, and f is the frequency.


Why the graph paper of photoelectric effect does not begin from the origin?

The graph paper for the photoelectric effect does not begin from the origin because there is a threshold frequency required to eject electrons. Below this threshold frequency, no electrons are emitted, so there is a minimum value on the x-axis. Electrons are only emitted once the incident light reaches a certain energy level (threshold), causing the emission of electrons. This energy level is depicted by the non-zero intercept on the x-axis of the graph paper.