It isn't. This is a popular statement, but it is complete incorrect. Both mass and energy are conserved.
Energy: The energy was already available previously, but in another form (nuclear energy, which is a type of potential energy).
Mass: The heat or light that is produced is energy; it has an associated mass. For example, the photons (light) that leave the Sun not only take energy, but also mass, away from the Sun. This mass is exactly equal to the "missing" mass.
Albert Einstein is credited with the equation that explains how the process of fusion provides energy. His equation, E = mc2 , stated that matter can be converted into energy and vice versa. In the fusion process that takes place in the sun, the hydrogen at the start of the process has more mass than the helium at the end of the process. Einstein explained that the lost mass is not actually lost, but has been converted to energy. This energy is the solar wind.
During the fusion process, mass is converted into energy through the combination of atomic nuclei to form a heavier nucleus. This process releases a large amount of energy in the form of electromagnetic radiation, such as gamma rays. The energy released is a result of the difference in mass between the initial nuclei and the final nucleus, as described by Einstein's famous equation, Emc2.
Fusion releases energy because when two light atomic nuclei combine to form a heavier nucleus, the resulting nucleus is more stable and has a lower mass than the original nuclei. This difference in mass is converted into energy according to Einstein's famous equation, Emc2.
Nuclear fusion releases energy because when light atomic nuclei combine to form a heavier nucleus, the resulting mass is slightly less than the sum of the original masses. This "missing" mass is converted into energy according to Einstein's famous equation, Emc2.
None. There is no such thing as mass-to-energy conversion: both mass and energy are conserved! The total mass before and after a nuclear reaction is the same; so is the total energy. For more information, read the Wikipedia article on "binding energy".
The mass lost in nuclear fusion is converted into energy according to Einstein's famous equation, E=mc^2. This energy is released in the form of photons, such as gamma rays, and contributes to sustaining the fusion reaction.
The total mass is less after a fusion reaction. Some of the mass is converted into energy and given off due to the nuclear fusion reaction. For example. 2 atoms of hydrogen are fused to become 1 atom of helium. However, the helium atom will have less mass than the combined mass of the 2 original hydrogen atoms. The excess mass is lost via the energy given off from the nuclear fusion reaction.
in neclear fusion, two hydrogen nuclei combine to create a helium, which has slightly less mass than the two hydrogen nuclei. The lost mass is converted to energy.
No, fusion does not violate the law of conservation of matter. In fusion reactions, the total mass of the reactants is equal to the total mass of the products, as mass is converted into energy according to Einstein's famous equation, Emc2.
In nuclear fusion, the mass of the atomic nuclei is converted into energy according to Einstein's famous equation E=mc^2. This means that a small amount of mass is converted directly into a large amount of energy during the fusion process.
In a fusion reaction, the total mass of the reaction products is less than the total mass of the initial reactants due to the conversion of mass into energy according to Einstein's famous equation E=mc^2. This difference in mass is known as the mass defect, and the lost mass is converted into energy during the fusion reaction.
Albert Einstein is credited with the equation that explains how the process of fusion provides energy. His equation, E = mc2 , stated that matter can be converted into energy and vice versa. In the fusion process that takes place in the sun, the hydrogen at the start of the process has more mass than the helium at the end of the process. Einstein explained that the lost mass is not actually lost, but has been converted to energy. This energy is the solar wind.
In nuclear fusion of hydrogen, the transformation of mass into energy occurs. This is in accordance with Einstein's equation E=mc^2, where a small amount of mass is converted into a large amount of energy.
During the fusion process, mass is converted into energy through the combination of atomic nuclei to form a heavier nucleus. This process releases a large amount of energy in the form of electromagnetic radiation, such as gamma rays. The energy released is a result of the difference in mass between the initial nuclei and the final nucleus, as described by Einstein's famous equation, Emc2.
Mass. When you split a large atom (fission) into parts the mass of the parts is less then the original atom. The "lost" mass comes out as energy. When you combine two small atoms into a larger atom (fusion) , the larger atom has less mass then the two original atoms and the "lost" mass comes out as energy.
In nuclear fusion, mass is converted into energy according to Einstein's equation, E=mc^2. When lighter atomic nuclei combine to form a heavier nucleus, the resulting nucleus is slightly less massive than the sum of the original nuclei, with the "missing" mass converted into energy.
The sun's energy is released when nuclear fusion converts hydrogen atoms into energy. This process involves the fusion of hydrogen nuclei to form helium nuclei, releasing large amounts of energy in the form of light and heat.