It will take 8 days.
The half life is the time it takes half of an element to decay.
Isotope A is more radioactive because it has a shorter half-life, indicating a faster rate of decay. A shorter half-life means that more of the isotope will undergo radioactive decay in a given time period compared to an isotope with a longer half-life.
The half-life of a radioactive material is the time it takes for half of a sample of the substance to decay. It is a characteristic property of the specific radioactive isotope and is used to determine the rate of decay and the stability of the material. The half-life can vary greatly depending on the isotope, ranging from fractions of a second to billions of years.
Scientists used radioactive decay to measure the age of rocks, artifacts, and archaeological materials. By measuring the amount of radioactive isotopes present in a sample and comparing it to the known half-life of the isotope, scientists can determine how long ago the material formed. This technique is known as radiometric dating and allows researchers to establish the age of objects thousands to billions of years old.
The time it takes for half of a radioactive sample to decay is known as the half-life. Each radioactive element has a unique half-life, which could range from fractions of a second to billions of years. The half-life remains constant regardless of the size of the initial sample.
Half life is the time taken for approximately half of the available nuclei in a sample of radioactive material to decay into something else. It's a characteristic of the isotope, for example, the half life of the isotope of iodine, I131 is 8.08 days. Half lives can vary from fractions of a second to thousands of years.
Both radioactive isotopes and radioactive dating rely on the process of radioactive decay. Radioactive isotopes decay at a known rate, allowing scientists to measure the passage of time based on the amount of decay that has occurred. Radioactive dating uses this decay process to determine the age of rocks and fossils.
Isotope A is more radioactive because it has a shorter half-life, indicating a faster rate of decay. A shorter half-life means that more of the isotope will undergo radioactive decay in a given time period compared to an isotope with a longer half-life.
Answer : When the isotopes decay, scientists can find out how old the rock is depending on the radioactive isotope's half-life. Explanation: Radioactive isotopes are unstable and will decay. For example, when humans die carbon-14 decays. The isotopes will decay into a stable isotope over time. Scientists can tell how old the rock was from looking at the radioactive isotope's half-life, which tells them how long it would take for there to be half the radioactive isotope and half the stable isotope. At the next half-life there will be 25% of the radioactive isotope and 75% of the stable isotope. At the next half life there will be 12.5% radioactive and 87.5% stable. Example: Carbon-14 is a radioactive isotope with a half life of 5,730 years. How old would carbon-14 be when there is 75% carbon-14 in the rock? 75% is half of the time before the half-life, so it would be 2,365 years. Hope this helps. Half life helps scientists find how much the isotope has decayed and the age of the rock.
Answer : When the isotopes decay, scientists can find out how old the rock is depending on the radioactive isotope's half-life. Explanation: Radioactive isotopes are unstable and will decay. For example, when humans die carbon-14 decays. The isotopes will decay into a stable isotope over time. Scientists can tell how old the rock was from looking at the radioactive isotope's half-life, which tells them how long it would take for there to be half the radioactive isotope and half the stable isotope. At the next half-life there will be 25% of the radioactive isotope and 75% of the stable isotope. At the next half life there will be 12.5% radioactive and 87.5% stable. Example: Carbon-14 is a radioactive isotope with a half life of 5,730 years. How old would carbon-14 be when there is 75% carbon-14 in the rock? 75% is half of the time before the half-life, so it would be 2,365 years. Hope this helps. Half life helps scientists find how much the isotope has decayed and the age of the rock.
No, potassium-40 is a radioactive isotope of potassium. It undergoes radioactive decay with a half-life of about 1.25 billion years, emitting beta particles in the process.
Depending on the isotope: - for 235U: 7,038.108 years - for 238U: 4,468.109 years etc.
Half-life is the time it takes for one half of a certain type of atom (isotope) to decay. The amount of time varies a lot between different isotopes; in some cases it may be a fraction of a second, in another, it may be billions of years.
The half-life of a radioactive material is the time it takes for half of a sample of the substance to decay. It is a characteristic property of the specific radioactive isotope and is used to determine the rate of decay and the stability of the material. The half-life can vary greatly depending on the isotope, ranging from fractions of a second to billions of years.
The time it takes for a radioactive atom to decay can vary significantly depending on the specific isotope. This is measured in terms of a half-life, which is the time it takes for half of the radioactive atoms in a sample to decay. Half-lives can range from fractions of a second to billions of years.
5000 years old
Radio active parent elements decay to stable daughter elements i.e. the radio active parent Potassium 40 decays to Argon 40 Each radioactive isotope has it's own half life A half life is the time it takes for the parent radioactive element to decay to a daughter product, Potassium 40 decays to Argon 40 with a half life of 1 1/4 billion years. Therin lies the problem of storing nuclear waste
The half life is the period of time it takes radioactive decay to transmute one half of the isotope present at the start of the period to a different isotope, usually an isotope of a different element. This period of time is different for different isotopes, with known isotope half lives ranging from femtoseconds to many billions of years.