This is one of those things where the answer depends on what you mean.
The fusion of a deuterium atom and a tritium atom into a helium atom produces about 14.1 million electron volts (MeV). By comparison, the fission of a uranium atom produces about 202 MeV, making a fission event over 14 times as powerful as a fusion event.
But we could looked at it another way. A uranium-238 atom as an Atomic Mass of about 238, and the 202 MeV come from that mass, providing a yield of about 0.82 MeV per unit mass. By contrast, the 14.1 MeV from one deuterium, with an atomic mass of about 2, and one tritium, with an atomic mass of about 3, so the yield is about 2.8 MeV per unit mass, which makes fusion over 3 times as powerful as fission per mass per event.
Nuclear fission does not produce more energy than nuclear fusion. In nuclear fusion (6.4 MeV) per nucleon is given out which is much greater than the energy given out per nucleon (1 MeV) during a nuclear fission reaction.
The energy stored in the nucleus is nuclear energy, which is released during nuclear reactions such as fission or fusion. This energy is much more potent than chemical energy due to the large amount of energy stored in the nucleus of an atom.
In a fission reactor which has been operating at a steady power level, on shutdown the fission reactions stop at once, but the radioactivity of the fission products in the fuel still produces thermal energy. This is about 6.5 percent of the previous power level immediately, dropping to about 1 percent after 1 hour. In the case of fusion, there are no fission products so this comparison does not exist, in fact if fusion reactors can ever be made, this is one of the advantages over fission reactors.
Fusion reaction combines isotopes of hydrogen to make helium and release energy. This requires temperatures in the millions of Kelvins to start.Fission reaction breaks up isotopes of heavy elements (Uranium & Plutonium) into lighter elements (fission fragments, a major part of fallout) and release energy. This can start a normal temperatures.
Fission reaction gets its energy from breaking up large nuclei (e.g. uranium, plutonium) into smaller ones.Fusion reaction gets its energy from combining small nuclei (hydrogen isotopes) together to make bigger ones (helium).Modern nuclear weapons are rarely pure fission or fusion, but are typically some mixture of them in a unique arrangement to get desired effects, in a desired package size, at an affordable production cost.
Nuclear Fusion, not to be mistaken with Nuclear Fission, is a process in which energy is created due to the merging or "fusion" of subatomic particles. The process is much more energy efficient, and produces larger quantities of energy than in a fission based process.
In terms of energy per atom, nuclear fusion produces more energy than nuclear fission. Fusion reactions involve the combination of lighter atomic nuclei to form heavier nuclei, releasing large amounts of energy in the process. Fission reactions, on the other hand, involve the splitting of heavier atomic nuclei into smaller fragments, releasing energy.
I believe that it is the fission (not fusion) of particles. Essentially it is like nuclear bombs going off but with much more energy.
Nuclear fission does not produce more energy than nuclear fusion. In nuclear fusion (6.4 MeV) per nucleon is given out which is much greater than the energy given out per nucleon (1 MeV) during a nuclear fission reaction.
Good question. A fusion bomb combines (fuses) light nuclei (hydrogen) into larger nuclei to get its energy. But it needs a fission bomb to start it. A fission bomb breaks up (fissions) heavy nuclei (uranium/plutonium) into smaller nuclei to get its energy.
The binding energy (Strong Atomic Force) released is much greater when fusion occurs than when fission occurs. As an example, that is why fission bombs typically have yields around 100 to 500 kilotons of equivalent TNT, while fusion bombs typically have yields in the 25 to 50 megaton range. The problem is that fusion requires a lot of energy to initiate - in fact, most fusion bombs use a fission bomb to set them off.
With nuclear fission, a large atomic nucleus (such as a uranium nucleus) breaks apart into smaller nuclei, and energy is released. With nuclear fusion, small atomic nuclei (such as hydrogen) join to become larger nuclei, and energy is released. Fusion of hydrogen releases much more energy than any other type of either fusion or fission. Note that the dividing line between heavy nuclei and light nuclei is the iron nucleus, which is at the perfect point of nuclear stability, so that neither fusion nor fission of iron nuclei would release any energy.
Yes and No. This really depends on what you mean.If you are talking about a single event, the fission of a uranium atom typically releases about 200 million electron volts (MeV). By contrast, the fusion of a deuterium atom with a tritium atom produces about 17.6 MeV. This would seem to mean that fission produces more energy. And it does - per event.On the other hand, a deuterium atom has an atomic mass of 2, and a tritium atom has an atomic mass of 3. So the fusion involving an atomic mass of 5 produces 17.6 MeV. If we had 47 of these, the total mass would be about 235 (roughly the same as 235U) and the result would be 47x17.6 or 827.2. By contrast, 235U has an atomic mass of roughly 235. And the fission involving the atomic mass of 235 produces 200 MeV. This means that the fusion of an equal mass produces (in this particular comparison) a bit more than four times as much power. So fusion can be more powerful - by mass.But fusion of elements more massive than iron is endothermic. So it is always less powerful than fission.Also, there is a practical consideration, if you are interested in practicalities. And this relates to the amount of fuel available. We will run out of uranium and thorium ores. When that happens, fission power will no longer be possible. We will possibly never run out of fuel for fusion fuels. So fusion is a more powerful power source over time. But of course, by this standard, wind is more powerful than fission, because we will run out of the ores, but the wind will just blow on and on.
The term atom bomb is somewhat ambiguous. The more precise distinction that you are trying to make is between a fission (or uranium or plutonium based) bomb and a fusion (or hydrogen based) bomb. The process of nuclear fission releases a certain amount of energy, and the process of nuclear fusion, per nucleus, releases a much larger amount of energy. Hence, you can build much bigger bombs based on fusion (although they still contain fission bombs which are required to create the high temperature needed for fusion).
Sort of. Nuclear fusion is when two atoms are fused together to make another one, while nuclear fission is when one atom is split into two atoms. Both processes, however, involve a loss of mass representing the binding energy that was released. This binding energy is manifest as heat. It just happens that the amount of loss is far greater in fusion than in fission. That's why the H-Bomb (a fusion device) is so much more powerful than the A-Bomb (a fission device).
Not devastated, it's devastating. And it's more devastating because fusion produces more energy than fission. For example, the amount of hydrogen in a 1MT hydrogen bomb is a little more than you need to fill up a party balloon, but as nuclear fission triggers its fusion (yep, they use system like that), all that hydrogen fuses into helium, releasing a tremendous power.
Only because you can put an unlimited amount of fusion fuel in a bomb (unlimited yield), while more than a certain amount of fission fuel in a bomb will trigger predetonation and a fizzle (negligible yield) probably killing the people assembling the bomb with neutron radiation (not the blast). The energy released per fusion event is less than 1/10 of the energy released per fission event.