answersLogoWhite

0

What else can I help you with?

Continue Learning about Physics

How much work must be done on a kg sled to increase its speed from 10ms to 15 ms?

To calculate the work done on the sled to increase its speed, you need to know the initial and final kinetic energy. The work done is equal to the change in kinetic energy, which is given by the formula: Work = (1/2) * m * (vf^2 - vi^2) Substitute the mass of the sled, initial speed, and final speed to find the work done.


How much work is done to increase a 20 kg scooter's speed from 10 ms to 20 ms?

The work done is equal to the change in kinetic energy, which can be calculated using the formula: W = ΔKE = 1/2 m (v_f^2 - v_i^2). Plugging in the values, the work done to increase the speed of the scooter from 10 m/s to 20 m/s is 6000 J.


How much work is done to increase a 20 kg scooter speed from Ms to 20 ms?

The work done to increase the speed of the scooter can be calculated as the change in kinetic energy. The initial kinetic energy is given by (1/2)mv^2. The final kinetic energy is (1/2)m(20)^2. The work done is the difference between the final and initial kinetic energies.


How much work must be done on a 10-kg snowboard to increase its speed from 2ms to 4 ms 100 J.?

The work done on the snowboard to increase its speed is 100 Joules. This work-energy theorem is based on the change in kinetic energy, given by the equation: work = change in kinetic energy. In this case, the snowboard has a mass of 10 kg and the speed increases from 2 m/s to 4 m/s.


How much mass will a 100kg object have on mercury?

On Mercury, the gravitational acceleration is approximately 3.7 m/s^2, which is about 38% of Earth's gravity (9.81 m/s^2). Therefore, a 100kg object on Mercury would have a weight of 370N (100kg * 3.7 m/s^2).