If the distance between two objects is increased by 3 times, the magnitude of gravitational force acting between them will decrease by a factor of 9, since gravitational force is inversely proportional to the square of the distance between the objects (1/3)^2 = 1/9.
The gravitational force that one object exerts on another will decrease in magnitude. In the formula for gravitational force, the force is inversely proportional to the square of distance. This means that reducing the distance between the objects will increase the magnitude of gravitational force.
The magnitude of the gravitational force between two bodies depends on the mass of the bodies and the distance between them. The larger the mass of the bodies, the greater the gravitational force, and the closer the bodies are, the stronger the gravitational force.
The magnitude of a gravitational force depends on the masses of the objects and the distance between them. This is described by Newton's Law of Universal Gravitation, which states that the force of gravity decreases with increasing distance between the objects.
The factor that has a greater overall effect on gravitational force is distance. Gravitational force decreases as the distance between two objects increases, while mass affects the magnitude of the force but not as significantly as distance.
Gravitational Force = Gravitational Constant x mass of the first object x mass of the second object / distance squared. So what affects the magnitude is the masses of the objects and the distance between them. Gravitational Constant = 6.672 x 10^-11 N x m^2/kg^2 Both masses, and the distance between them.
the gravitational force between them decreases.
The gravitational force that one object exerts on another will decrease in magnitude. In the formula for gravitational force, the force is inversely proportional to the square of distance. This means that reducing the distance between the objects will increase the magnitude of gravitational force.
The magnitude of the gravitational force between two bodies depends on the mass of the bodies and the distance between them. The larger the mass of the bodies, the greater the gravitational force, and the closer the bodies are, the stronger the gravitational force.
The two things that affect the magnitude of gravitational force are the masses of the objects involved and the distance between them. The greater the masses of the objects, the stronger the gravitational force. Similarly, the closer the objects are, the stronger the gravitational force.
Gravitational Force = Gravitational Constant x mass of the first object x mass of the second object / distance squared. So what affects the magnitude is the masses of the objects and the distance between them. Gravitational Constant = 6.672 x 10^-11 N x m^2/kg^2 Both masses, and the distance between them.
Gravitational Force = Gravitational Constant x mass of the first object x mass of the second object / distance squared. So what affects the magnitude is the masses of the objects and the distance between them. Gravitational Constant = 6.672 x 10^-11 N x m^2/kg^2 Both masses, and the distance between them.
The magnitude of a gravitational force depends on the masses of the objects and the distance between them. This is described by Newton's Law of Universal Gravitation, which states that the force of gravity decreases with increasing distance between the objects.
The factor that has a greater overall effect on gravitational force is distance. Gravitational force decreases as the distance between two objects increases, while mass affects the magnitude of the force but not as significantly as distance.
-- the product of the two masses -- the distance between their centers of mass
Gravitational Force = Gravitational Constant x mass of the first object x mass of the second object / distance squared. So what affects the magnitude is the masses of the objects and the distance between them. Gravitational Constant = 6.672 x 10^-11 N x m^2/kg^2 Both masses, and the distance between them.
If the distance between two objects is increased, the gravitational force between them is reduced. This is because gravitational force decreases with distance following the inverse square law, which states that the force is inversely proportional to the square of the distance between the objects.
The magnitude of gravitational force between two objects is directly proportional to the product of their masses. This means that as the mass of one or both objects increases, the magnitude of the gravitational force between them also increases. In simpler terms, the more massive an object is, the stronger its gravitational pull.