It would just keep speeding up until it hit the ground, so the higher you drop it from, the faster it will go.
The velocity of an object falling towards the surface of the Earth will increase by a rate of approximately 9.8 m/s² due to gravity. This acceleration would continue until the object reaches terminal velocity or impacts the surface of the Earth.
The acceleration of a falling object near the Earth's surface is approximately 9.81 m/s^2, assuming air resistance is negligible. This acceleration is due to gravity and causes the object to increase its velocity by 9.81 m/s every second it falls.
The acceleration of falling bodies due to gravity on Earth is approximately 9.81 m/s^2, which is constant regardless of the mass of the object. This acceleration causes all objects to fall at the same rate in a vacuum, as famously demonstrated by a feather and a hammer on the Moon.
Without atmospheric drag, all free falling objects near earth's surface will have the same acceleration. But because of friction with the air (air resistance), the velocity of objects due to that acceleration is limited. The actual velocity is dependent on the surface area of the object relative to its mass. The principle of the parachute is to increase the surface area of a falling object with respect to its mass.
Neglecting air resistance, a body falling freely near the earth's surface falls with an acceleration of 9.8 meters (32.2 feet) per second per second, regardless of how big, small, light, or heavy it is.
The velocity of an object falling towards the surface of the Earth will increase by a rate of approximately 9.8 m/s² due to gravity. This acceleration would continue until the object reaches terminal velocity or impacts the surface of the Earth.
The acceleration of a falling object near the Earth's surface is approximately 9.81 m/s^2, assuming air resistance is negligible. This acceleration is due to gravity and causes the object to increase its velocity by 9.81 m/s every second it falls.
That is the approximate acceleration produced by gravitation near the Earth's surface. It means that the velocity of a freely falling object (i.e., no significant air resistance) will change by 9.8 meters per second, every second.
The acceleration of falling bodies due to gravity on Earth is approximately 9.81 m/s^2, which is constant regardless of the mass of the object. This acceleration causes all objects to fall at the same rate in a vacuum, as famously demonstrated by a feather and a hammer on the Moon.
Without atmospheric drag, all free falling objects near earth's surface will have the same acceleration. But because of friction with the air (air resistance), the velocity of objects due to that acceleration is limited. The actual velocity is dependent on the surface area of the object relative to its mass. The principle of the parachute is to increase the surface area of a falling object with respect to its mass.
Neglecting air resistance, a body falling freely near the earth's surface falls with an acceleration of 9.8 meters (32.2 feet) per second per second, regardless of how big, small, light, or heavy it is.
It depends if it is affected by air resistance or not. If not then all objects close to the surface of the Earth have an acceleration of 9.81ms^-2 in free fall. If it is affected by air resistance you need all sorts of more information to answer that question, like the drag coefficient of the air.
Yes, it is possible for a falling object to have a positive acceleration if it is undergoing free fall near the surface of the Earth and experiencing a net force greater than gravity (e.g., air resistance). This can cause the object to accelerate in the direction of its motion despite falling downward.
If gravity is the only force, they WILL have an acceleration of about 9.8 meter per second square, close to Earth's surface. However, there may be forces other than gravity involved - such as air resistance.
by increasing surface area
The acceleration of a falling coin near the surface of the Earth is approximately 9.8 m/s^2. This acceleration is due to gravity pulling the coin downwards. As the coin falls from a tower, its acceleration remains constant until it reaches terminal velocity or hits the ground.
Freely falling bodies undergo acceleration due to gravity, which is approximately 9.81 m/s^2 on Earth. This acceleration causes the speed of the falling object to increase as it falls towards the ground.