Temperature is a measure of the average kinetic energy per molecule in an object. It is not a measure of the total kinetic energy of all the molecules in the object.
The kinetic energy of a gas molecule is proportional to its temperature. According to the kinetic theory of gases, the average kinetic energy of gas molecules is directly proportional to the absolute temperature of the gas.
The kinetic energy of a single gas molecule is not proportional to anything. The average kinetic energy of gas molecules is proportional to their absolute temperature.
Temperature is a measure of the average translational kinetic energy per molecule in an object. It represents the average energy of motion of individual molecules within the object.
The average kinetic energy of all molecules in an object is directly proportional to the object's temperature. As temperature increases, the average kinetic energy of the molecules also increases. This kinetic energy is a measure of the average speed of the molecules within the object.
The measure of the average kinetic energy of a group of molecules is expressed as temperature. As temperature increases, molecules move faster and their kinetic energy increases. This average kinetic energy is directly related to the temperature of the system.
temperature is the measure of a molecule's average kinetic energy, so yes.
Yes, at a given temperature, the average kinetic energy per molecule is the same for oxygen and nitrogen molecules in air. This is because the kinetic energy of a gas molecule is determined by its temperature, and not its composition.
The kinetic energy of a gas molecule is proportional to its temperature. According to the kinetic theory of gases, the average kinetic energy of gas molecules is directly proportional to the absolute temperature of the gas.
The kinetic energy of a single gas molecule is not proportional to anything. The average kinetic energy of gas molecules is proportional to their absolute temperature.
Temperature is a measure of the average translational kinetic energy per molecule in an object. It represents the average energy of motion of individual molecules within the object.
The average kinetic energy of all molecules in an object is directly proportional to the object's temperature. As temperature increases, the average kinetic energy of the molecules also increases. This kinetic energy is a measure of the average speed of the molecules within the object.
The kinetic energy of a gas molecule is directly proportional to its temperature, as per the kinetic theory of gases. Therefore, if the temperature is the same for both oxygen and methane molecules in the planet's atmosphere, then the average kinetic energy of an oxygen molecule is the same as that of a methane molecule. The mass of the molecule does not impact its kinetic energy at a given temperature.
The measure of the average kinetic energy of a group of molecules is expressed as temperature. As temperature increases, molecules move faster and their kinetic energy increases. This average kinetic energy is directly related to the temperature of the system.
temperature is the average kinetic energy of a particle
Temperature measures the average kinetic energy of air molecules. As the temperature increases, the molecules move faster and have higher kinetic energy.
The measure of intensity of heat in degrees reflecting the average kinetic energy of the molecules is temperature. Temperature is a quantitative measure of the average kinetic energy of the particles in a substance or system. The higher the temperature, the greater the average kinetic energy of the molecules.
The average kinetic energy of all the molecules in an object is the temperature.