answersLogoWhite

0

An immersion heater can be wired in series to a joulemeter to measure the added heat to a material. Once a certain amount of energy (Eh) had been added the temperature change was recorded (Dt) Along with the mass the equation Eh=cmDt can be used to find out c which is the specific heat capacity. Physics Class 4.5 St. Davids High School, Dalkieth, Scotland

User Avatar

Wiki User

17y ago

What else can I help you with?

Continue Learning about Physics

To determine the specific heat capacity of a solid conclusion?

To determine the specific heat capacity of a solid, conduct an experiment where you measure the temperature change of a known mass of the solid when a known amount of heat is added or removed. By calculating the specific heat capacity using the formula Q = mcΔT (where Q is the heat energy, m is the mass, c is the specific heat capacity, and ΔT is the temperature change), you can determine the specific heat capacity of the solid. Repeat the experiment multiple times to ensure accuracy and reliability in your conclusion.


How do you determine specific heat capacity of a liquid?

To determine the specific heat capacity of a liquid, you can use a calorimeter. By measuring the initial and final temperatures of the liquid when it absorbs a known quantity of heat, you can calculate the specific heat capacity using the formula Q = mcΔT, where Q is the heat absorbed, m is the mass of the liquid, c is the specific heat capacity, and ΔT is the change in temperature.


What are precaution in specific heat capacity experiment?

Some precautions to consider in a specific heat capacity experiment include ensuring proper insulation to minimize heat loss, using accurate measuring instruments to determine mass and temperature changes, and conducting the experiment in a controlled environment to avoid external influences on the results. Additionally, it's important to handle hot objects with care and follow appropriate safety protocols when working with heat sources.


Is the specific heat capacity of iron a dependent variable in a scientific experiment?

Yes, the specific heat capacity of iron can be considered a dependent variable in a scientific experiment, as it is a characteristic that can be influenced or affected by changes in other variables being tested.


What principle permits calorimetry to be used to determine the specific heat capacity of a substance?

The principle of energy conservation permits calorimetry to be used to determine the specific heat capacity of a substance. This principle states that energy cannot be created or destroyed, only transferred. Calorimetry utilizes this principle by measuring the heat exchanged between substances to determine specific heat capacity.

Related Questions

To determine the specific heat capacity of a solid conclusion?

To determine the specific heat capacity of a solid, conduct an experiment where you measure the temperature change of a known mass of the solid when a known amount of heat is added or removed. By calculating the specific heat capacity using the formula Q = mcΔT (where Q is the heat energy, m is the mass, c is the specific heat capacity, and ΔT is the temperature change), you can determine the specific heat capacity of the solid. Repeat the experiment multiple times to ensure accuracy and reliability in your conclusion.


How can one determine the heat capacity of a calorimeter?

To determine the heat capacity of a calorimeter, one can perform a calibration experiment using a known heat source, such as a substance with a known heat capacity. By measuring the temperature change in the calorimeter when the known heat source is added, the heat capacity of the calorimeter can be calculated using the formula Q mcT, where Q is the heat energy transferred, m is the mass of the substance, c is the specific heat capacity, and T is the temperature change.


How do you determine specific heat capacity of a liquid?

To determine the specific heat capacity of a liquid, you can use a calorimeter. By measuring the initial and final temperatures of the liquid when it absorbs a known quantity of heat, you can calculate the specific heat capacity using the formula Q = mcΔT, where Q is the heat absorbed, m is the mass of the liquid, c is the specific heat capacity, and ΔT is the change in temperature.


What are precaution in specific heat capacity experiment?

Some precautions to consider in a specific heat capacity experiment include ensuring proper insulation to minimize heat loss, using accurate measuring instruments to determine mass and temperature changes, and conducting the experiment in a controlled environment to avoid external influences on the results. Additionally, it's important to handle hot objects with care and follow appropriate safety protocols when working with heat sources.


Is the specific heat capacity of iron a dependent variable in a scientific experiment?

Yes, the specific heat capacity of iron can be considered a dependent variable in a scientific experiment, as it is a characteristic that can be influenced or affected by changes in other variables being tested.


What principle permits calorimetry to be used to determine the specific heat capacity of a substance?

The principle of energy conservation permits calorimetry to be used to determine the specific heat capacity of a substance. This principle states that energy cannot be created or destroyed, only transferred. Calorimetry utilizes this principle by measuring the heat exchanged between substances to determine specific heat capacity.


How do you work out specific heat capacity in physics?

To determine specific heat capacity in physics, you can use the formula Q = mcΔT, where Q represents heat transferred, m is the mass of the substance, c is the specific heat capacity, and ΔT is the change in temperature. By rearranging the formula to solve for c, you can find the specific heat capacity of the substance.


What is the conclusion on specific heat capacity of liquid experiment?

The conclusion of a specific heat capacity of liquid experiment typically involves determining the amount of heat required to raise the temperature of a known mass of the liquid by a certain amount. By measuring the initial and final temperatures and applying the formula Q = mcΔT (where Q is the heat energy, m is the mass, c is the specific heat capacity, and ΔT is the temperature change), the specific heat capacity of the liquid can be calculated. The conclusion would summarize the findings of the experiment, including the specific heat capacity value obtained and any sources of error that may have impacted the results.


How can one propose a method to determine the heat capacity of the calorimeter?

To propose a method to determine the heat capacity of a calorimeter, one can conduct an experiment where a known amount of heat is added to the calorimeter and the resulting temperature change is measured. By using the equation Q mcT, where Q is the heat added, m is the mass of the calorimeter, c is the specific heat capacity of the calorimeter, and T is the temperature change, the heat capacity of the calorimeter can be calculated. This method allows for the determination of the heat capacity of the calorimeter by analyzing the relationship between the heat added and the resulting temperature change.


What is the independent variable in the calorimeter and specific heat experiment?

The independent variable in a calorimeter and specific heat experiment is typically the type of material being tested. By changing the type of material used in the experiment, one can examine how the specific heat capacity of different materials affects the amount of heat absorbed or released during a reaction.


What are the various properties of a substance that determine its heat capacity?

The specific heat capacity, density, and mass of a substance are properties that determine its heat capacity. Specific heat capacity is the amount of heat required to raise the temperature of one unit mass of the substance by one degree Celsius. Density and mass affect how much heat the substance can store and how quickly it can absorb or release heat.


How do you determine the specific heat capacity of an object by method of cooling?

To determine the specific heat capacity of an object by the cooling method, you would first heat the object to a known temperature and then immerse it in a known volume of water at a lower temperature. By monitoring the temperature change of the water and the object over time, you can calculate the specific heat capacity of the object using the formula q = mcΔT.