The higher the frequency, the more excited the photon stream.
The relationship between photon frequency and energy is direct and proportional. As the frequency of a photon increases, its energy also increases. This relationship is described by the equation E hf, where E is the energy of the photon, h is Planck's constant, and f is the frequency of the photon.
Photon energy is directly proportional to frequency. This relationship is described by the equation E = hf, where E is the energy of the photon, h is Planck's constant, and f is the frequency of the photon. This means that as frequency increases, photon energy also increases.
The mathematical relationship between frequency and energy is given by the formula E = hf, where E is the energy of a photon, h is Planck's constant, and f is the frequency of the photon. This equation shows that the energy of a photon is directly proportional to its frequency.
the higher the frequency the higher the energy
The energy of an electromagnetic photon is directly proportional to its frequency. This relationship is described by Planck's equation: E = hf, where E is energy, h is Planck's constant, and f is frequency. As frequency increases, so does the energy of the photon.
The relationship between photon frequency and energy is direct and proportional. As the frequency of a photon increases, its energy also increases. This relationship is described by the equation E hf, where E is the energy of the photon, h is Planck's constant, and f is the frequency of the photon.
Photon energy is directly proportional to frequency. This relationship is described by the equation E = hf, where E is the energy of the photon, h is Planck's constant, and f is the frequency of the photon. This means that as frequency increases, photon energy also increases.
The mathematical relationship between frequency and energy is given by the formula E = hf, where E is the energy of a photon, h is Planck's constant, and f is the frequency of the photon. This equation shows that the energy of a photon is directly proportional to its frequency.
the higher the frequency, the higher the energy (or visa versa).
the higher the frequency the higher the energy
The energy of an electromagnetic photon is directly proportional to its frequency. This relationship is described by Planck's equation: E = hf, where E is energy, h is Planck's constant, and f is frequency. As frequency increases, so does the energy of the photon.
The relationship between the energy of a photon (E), its frequency (v), and Planck's constant (h) is given by the equation E h v. This equation shows that the energy of a photon is directly proportional to its frequency, with Planck's constant serving as the proportionality constant.
In the equation Enhf, energy (E) is directly proportional to the frequency (f) of a photon. Planck's constant (h) is a constant that relates the energy of a photon to its frequency. The variable n represents the number of photons.
Yes, the frequency of a wave is directly proportional to the energy of a photon. This relationship is described by the equation E = hf, where E is the energy of the photon, h is Planck's constant, and f is the frequency of the wave.
The color of light is directly related to the energy of its photons. Light with higher photon energy appears bluer, while light with lower photon energy appears redder. This relationship is governed by the electromagnetic spectrum and the frequency of light.
The relationship between wavelength and energy per photon is inverse: shorter wavelengths correspond to higher energy photons, according to the equation E = hc/λ, where E is energy, h is Planck's constant, c is the speed of light, and λ is wavelength.
The energy of a photon depends on it's frequency