answersLogoWhite

0

the higher the frequency the higher the energy

What else can I help you with?

Continue Learning about Physics

What is the relationship between frequency and energy in the context of electromagnetic waves?

The relationship between frequency and energy in electromagnetic waves is that higher frequency waves have higher energy. This means that as the frequency of an electromagnetic wave increases, so does its energy.


What is the relationship between photon frequency and the energy of a photon?

The relationship between photon frequency and energy is direct and proportional. As the frequency of a photon increases, its energy also increases. This relationship is described by the equation E hf, where E is the energy of the photon, h is Planck's constant, and f is the frequency of the photon.


What is the relationship between the energy of an electromagnetic wave and its frequency?

The energy of an electromagnetic wave is directly proportional to its frequency. This means that as the frequency of the wave increases, so does its energy.


What is the mathematical relationship between frequency and energy?

The mathematical relationship between frequency and energy is given by the formula E = hf, where E is the energy of a photon, h is Planck's constant, and f is the frequency of the photon. This equation shows that the energy of a photon is directly proportional to its frequency.


Which is the relationship between photon energy and frequency?

Photon energy is directly proportional to frequency. This relationship is described by the equation E = hf, where E is the energy of the photon, h is Planck's constant, and f is the frequency of the photon. This means that as frequency increases, photon energy also increases.

Related Questions

What is the relationship between frequency and energy in the context of electromagnetic waves?

The relationship between frequency and energy in electromagnetic waves is that higher frequency waves have higher energy. This means that as the frequency of an electromagnetic wave increases, so does its energy.


What is the relationship between photon frequency and the energy of a photon?

The relationship between photon frequency and energy is direct and proportional. As the frequency of a photon increases, its energy also increases. This relationship is described by the equation E hf, where E is the energy of the photon, h is Planck's constant, and f is the frequency of the photon.


Describe the relationship between energy of a photon and frequency?

the higher the frequency, the higher the energy (or visa versa).


What is the relationship between the energy of an electromagnetic wave and its frequency?

The energy of an electromagnetic wave is directly proportional to its frequency. This means that as the frequency of the wave increases, so does its energy.


What is the mathematical relationship between frequency and energy?

The mathematical relationship between frequency and energy is given by the formula E = hf, where E is the energy of a photon, h is Planck's constant, and f is the frequency of the photon. This equation shows that the energy of a photon is directly proportional to its frequency.


Which is the relationship between photon energy and frequency?

Photon energy is directly proportional to frequency. This relationship is described by the equation E = hf, where E is the energy of the photon, h is Planck's constant, and f is the frequency of the photon. This means that as frequency increases, photon energy also increases.


What is the relationship between the energy of a wave and its frequency in the wave equation?

In the wave equation, the energy of a wave is directly proportional to its frequency. This means that as the frequency of a wave increases, so does its energy.


What is the relationship between energy and frequency in quantum mechanics, as described by the equation e ?

In quantum mechanics, the relationship between energy (e) and frequency () is described by the equation e . This equation shows that energy is directly proportional to frequency, where is the reduced Planck's constant. This means that as the frequency of a quantum system increases, its energy also increases proportionally.


What is the relationship between the wavelength and the frequency of radiant energy?

Wavelength and frequency are inversely proportional.


What is the relationship between energy and frequency of the electromagnetic waves in electromagnetic spectrum?

The energy of an electromagnetic wave is directly proportional to its frequency. This means that as the frequency of the wave increases, so does its energy. This relationship is described by Planck's equation E = h * f, where E is energy, h is Planck's constant, and f is frequency.


When describing electromagnetic radiation there is a(n) relationship between wavelength and frequency and the greater the frequency the energy the electromagnetic radiation has. A) direct less B) dire?

The relationship between wavelength and frequency in electromagnetic radiation is inverse - shorter wavelengths correspond to higher frequencies. Higher frequency radiation carries more energy, as energy is directly proportional to frequency in the electromagnetic spectrum.


What is the relationship between the wavelengh frequency and energy transmitted in electromagnetic waves?

The energy of an electromagnetic wave is directly proportional to its frequency and inversely proportional to its wavelength. Higher frequency waves carry more energy than lower frequency waves. This relationship is described by the equation E = hν, where E is energy, h is Planck's constant, and ν is frequency.