In the wave equation, the energy of a wave is directly proportional to its frequency. This means that as the frequency of a wave increases, so does its energy.
In quantum mechanics, the relationship between energy (e) and frequency () is described by the equation e . This equation shows that energy is directly proportional to frequency, where is the reduced Planck's constant. This means that as the frequency of a quantum system increases, its energy also increases proportionally.
the higher the frequency the higher the energy
The relationship between photon frequency and energy is direct and proportional. As the frequency of a photon increases, its energy also increases. This relationship is described by the equation E hf, where E is the energy of the photon, h is Planck's constant, and f is the frequency of the photon.
Photon energy is directly proportional to frequency. This relationship is described by the equation E = hf, where E is the energy of the photon, h is Planck's constant, and f is the frequency of the photon. This means that as frequency increases, photon energy also increases.
The mathematical relationship between frequency and energy is given by the formula E = hf, where E is the energy of a photon, h is Planck's constant, and f is the frequency of the photon. This equation shows that the energy of a photon is directly proportional to its frequency.
In quantum mechanics, the relationship between energy (e) and frequency () is described by the equation e . This equation shows that energy is directly proportional to frequency, where is the reduced Planck's constant. This means that as the frequency of a quantum system increases, its energy also increases proportionally.
the higher the frequency the higher the energy
The relationship between photon frequency and energy is direct and proportional. As the frequency of a photon increases, its energy also increases. This relationship is described by the equation E hf, where E is the energy of the photon, h is Planck's constant, and f is the frequency of the photon.
The relationship between the energy of a photon (E), its frequency (v), and Planck's constant (h) is given by the equation E h v. This equation shows that the energy of a photon is directly proportional to its frequency, with Planck's constant serving as the proportionality constant.
Photon energy is directly proportional to frequency. This relationship is described by the equation E = hf, where E is the energy of the photon, h is Planck's constant, and f is the frequency of the photon. This means that as frequency increases, photon energy also increases.
The mathematical relationship between frequency and energy is given by the formula E = hf, where E is the energy of a photon, h is Planck's constant, and f is the frequency of the photon. This equation shows that the energy of a photon is directly proportional to its frequency.
The energy of an electromagnetic wave is directly proportional to its frequency. This means that as the frequency of the wave increases, so does its energy. This relationship is described by Planck's equation E = h * f, where E is energy, h is Planck's constant, and f is frequency.
The energy of an electromagnetic wave is directly proportional to its frequency and inversely proportional to its wavelength. Higher frequency waves carry more energy than lower frequency waves. This relationship is described by the equation E = hν, where E is energy, h is Planck's constant, and ν is frequency.
The relationship between frequency and energy in electromagnetic waves is that higher frequency waves have higher energy. This means that as the frequency of an electromagnetic wave increases, so does its energy.
Wave frequency and wavelength are inversely related: as frequency increases, wavelength decreases, and vice versa. Higher frequency waves have more energy, while longer wavelength waves have lower energy. This relationship is described by the equation E=hf, where E is energy, h is Planck's constant, and f is frequency.
In the equation Enhf, energy (E) is directly proportional to the frequency (f) of a photon. Planck's constant (h) is a constant that relates the energy of a photon to its frequency. The variable n represents the number of photons.
A high energy light will have a shorter wavelength than a low energy light. If the wavelength goes down, then the frequency goes up. When calculating energy in the equation, E=hv, frequency (v) is the variable, not the wavelength. So in the equation, if you wanted a more energy (E), you would have the frequency be large. For the frequency to be big, then the wavelength has to be low.