Half-life is the length of time required for half the atoms in a radioactive sample to decay to some other type of atom. It is a logarithmic process, i.e. in one half-life, there is half the sample left, in two half-lives there is one quarter the sample left, in three half-lives there is one eight left, etc. The equation is...
AT = A0 2 (-T/H)
... where A is activity, T is time, and H is half-life.
The time it takes for 50 percent of the nuclei in a radioactive sample to decay to its stable isotope is called the half-life of the radioactive element. It is a characteristic property of each radioactive isotope and can vary greatly among different elements.
The time it takes for half of a radioactive sample to decay is known as the half-life. Each radioactive element has a unique half-life, which could range from fractions of a second to billions of years. The half-life remains constant regardless of the size of the initial sample.
Half life is the time taken for approximately half of the available nuclei in a sample of radioactive material to decay into something else. It's a characteristic of the isotope, for example, the half life of the isotope of iodine, I131 is 8.08 days. Half lives can vary from fractions of a second to thousands of years.
The time it takes for half the sample to decay is called the half-life.The time it takes for half the sample to decay is called the half-life.The time it takes for half the sample to decay is called the half-life.The time it takes for half the sample to decay is called the half-life.
No, uranium-238 has a long half-life of about 4.5 billion years. It is a naturally occurring isotope that is commonly found in nature. Shorter-lived isotopes, such as radon-222 or polonium-214, have much shorter half-lives.
halflife
The time it takes for 50 percent of the nuclei in a radioactive sample to decay to its stable isotope is called the half-life of the radioactive element. It is a characteristic property of each radioactive isotope and can vary greatly among different elements.
This time is called "half life" and is specific for each isotope.
its called Half-Time...
The activity of a radioactive sample is calculated using the formula: Activity = λ*N, where λ is the decay constant of the isotope and N is the number of radioactive nuclei present in the sample. The unit of activity is becquerel (Bq).
This time is known as the half-life.
The length of time required for half of a sample of radioactive material to decay
not sure you're asking exactly but I think the answer your looking for is radioactive half-life
To determine the most abundant isotope in a sample, scientists use a technique called mass spectrometry. This method measures the mass-to-charge ratio of isotopes in the sample, allowing researchers to identify the isotope that appears in the highest abundance.
The time it takes for half of a radioactive sample to decay is known as the half-life. Each radioactive element has a unique half-life, which could range from fractions of a second to billions of years. The half-life remains constant regardless of the size of the initial sample.
Half life is the time taken for approximately half of the available nuclei in a sample of radioactive material to decay into something else. It's a characteristic of the isotope, for example, the half life of the isotope of iodine, I131 is 8.08 days. Half lives can vary from fractions of a second to thousands of years.
The length of time required for half of a sample of radioactive material to decay