Half-life is the length of time required for half the atoms in a radioactive sample to decay to some other type of atom. It is a logarithmic process, i.e. in one half-life, there is half the sample left, in two half-lives there is one quarter the sample left, in three half-lives there is one eight left, etc. The equation is...
AT = A0 2 (-T/H)
... where A is activity, T is time, and H is half-life.
The time it takes for 50 percent of the nuclei in a radioactive sample to decay to its stable isotope is called the half-life of the radioactive element. It is a characteristic property of each radioactive isotope and can vary greatly among different elements.
The time it takes for half of a radioactive sample to decay is known as the half-life. Each radioactive element has a unique half-life, which could range from fractions of a second to billions of years. The half-life remains constant regardless of the size of the initial sample.
Half life is the time taken for approximately half of the available nuclei in a sample of radioactive material to decay into something else. It's a characteristic of the isotope, for example, the half life of the isotope of iodine, I131 is 8.08 days. Half lives can vary from fractions of a second to thousands of years.
The time it takes for half the sample to decay is called the half-life.The time it takes for half the sample to decay is called the half-life.The time it takes for half the sample to decay is called the half-life.The time it takes for half the sample to decay is called the half-life.
No, uranium-238 has a long half-life of about 4.5 billion years. It is a naturally occurring isotope that is commonly found in nature. Shorter-lived isotopes, such as radon-222 or polonium-214, have much shorter half-lives.
halflife
The time it takes for 50 percent of the nuclei in a radioactive sample to decay to its stable isotope is called the half-life of the radioactive element. It is a characteristic property of each radioactive isotope and can vary greatly among different elements.
This time is called "half life" and is specific for each isotope.
its called Half-Time...
The activity of a radioactive sample is calculated using the formula: Activity = λ*N, where λ is the decay constant of the isotope and N is the number of radioactive nuclei present in the sample. The unit of activity is becquerel (Bq).
This time is known as the half-life.
The length of time required for half of a sample of radioactive material to decay
not sure you're asking exactly but I think the answer your looking for is radioactive half-life
The time it takes for half of a radioactive sample to decay is known as the half-life. Each radioactive element has a unique half-life, which could range from fractions of a second to billions of years. The half-life remains constant regardless of the size of the initial sample.
To determine the most abundant isotope in a sample, scientists use a technique called mass spectrometry. This method measures the mass-to-charge ratio of isotopes in the sample, allowing researchers to identify the isotope that appears in the highest abundance.
Half life is the time taken for approximately half of the available nuclei in a sample of radioactive material to decay into something else. It's a characteristic of the isotope, for example, the half life of the isotope of iodine, I131 is 8.08 days. Half lives can vary from fractions of a second to thousands of years.
The length of time required for half of a sample of radioactive material to decay