answersLogoWhite

0

Vectros can come in any number of components when the component reflects a dimension. Vectors reflect dimensionality of the space. If the problem has three dimensions, three components are enough, two components are insufficient to handle the problem and 5 dimensions may be too much.

Operations are also importnat, not just number of components. Only a few vector spaces provide division. if your problem needs division, 3 and 5 dimension vectors are not capable of division algebra. Only 1,2,4 dimension spaces have associative division algebras.

User Avatar

Wiki User

13y ago

What else can I help you with?

Continue Learning about Physics

Vector may be resolved into only three components?

A vector may be represented as a combination of as many components as you feel would satisfy you, without limit. Whatever ludicrous quantity you choose, for whatever private reason, a group of that many vectorlets can always be defined that combine to have precisely the magnitude and direction of the original single vector. Even though this fact is worth contemplating for a second or two, it's generally ignored, mainly because it is so useless in the practical sense ... it doesn't make a vector any easier to work with when it is replaced by 347 components, for example. The most useful number of components is: one for each dimension of the space in which the original vector lives. Two components to replace a vector on a flat graph, and three components to replace a vector in our world.


Can a vector have zero magnitude if one of its component is not zero?

No, a vector cannot have zero magnitude if one of its components is not zero. The magnitude of a vector is determined by the combination of all its components, so if any component is not zero, the vector will have a non-zero magnitude.


What is component method of vector vector addition?

Any vector could be resolved into perpendicular components one along x axis and the other along y axis. So all vectors would be split into two components. Now we can easily add the x components and y components. If all in the same simply addition. If some are in opposite we have to change its sign and add them. Finally we will have only two one along x and another along y. Now we can get the effective by using Pythagoras.


How do you eliminate vectors?

To eliminate a vector, you can set its components to zero. This effectively removes the contribution of that vector from any calculations or equations it was involved in.


How would you define the zero vector 0?

The zero vector, denoted as 0, is a vector with all components equal to zero. It serves as the additive identity element in vector spaces, meaning that adding it to any vector does not change the vector's value.

Related Questions

What is the sum of two or more vectors added together called?

The sum of any number of vectors is itself a vector, just as the sum of any number of scalars (normal numbers) is a normal number.If a vector is resolved into 2 components, x and y, in the form [x,y], then it can be added to any other vector resolved into 2 components [z,a].[x,y]+[z,a]=[x+z,y+a]


Vector may be resolved into only three components?

A vector may be represented as a combination of as many components as you feel would satisfy you, without limit. Whatever ludicrous quantity you choose, for whatever private reason, a group of that many vectorlets can always be defined that combine to have precisely the magnitude and direction of the original single vector. Even though this fact is worth contemplating for a second or two, it's generally ignored, mainly because it is so useless in the practical sense ... it doesn't make a vector any easier to work with when it is replaced by 347 components, for example. The most useful number of components is: one for each dimension of the space in which the original vector lives. Two components to replace a vector on a flat graph, and three components to replace a vector in our world.


What is the maximun no of components into which a vector can be split?

There is no maximum. A vector can be defined for a hyperspace with any number of dimensions. Such a hyperspace can be described using an orthogonal system of axes and the vector can be split into its components along each one of these axes.


Vector may be resolved into only two components?

A vector may be represented as a combination of as many components as you feel would satisfy you, without limit. Whatever ludicrous quantity you choose, for whatever private reason, a group of that many vectorlets can always be defined that combine to have precisely the magnitude and direction of the original single vector. Even though this fact is worth contemplating for a second or two, it's generally ignored, mainly because it is so useless in the practical sense ... it doesn't make a vector any easier to work with when it is replaced by 347 components, for example. The most useful number of components is: one for each dimension of the space in which the original vector lives. Two components to represent a vector on a flat graph, and three components to represent a vector in our world.


Can a vector has componentsgreater than the vector magnitude?

No, a vector can not have any components greater than itself.


Can a unit vector have any components with magnitude greater than unity?

No, by definiton, a unit vector is a vector with a magnitude equal to unity.


Can a vector have zero magnitude if one of its component is not zero?

No, a vector cannot have zero magnitude if one of its components is not zero. The magnitude of a vector is determined by the combination of all its components, so if any component is not zero, the vector will have a non-zero magnitude.


What is component method of vector vector addition?

Any vector could be resolved into perpendicular components one along x axis and the other along y axis. So all vectors would be split into two components. Now we can easily add the x components and y components. If all in the same simply addition. If some are in opposite we have to change its sign and add them. Finally we will have only two one along x and another along y. Now we can get the effective by using Pythagoras.


What is the angle between the components of a vector 0 or 90?

If a vector is broken up into components the angle between the components is 90 degrees.


How do you eliminate vectors?

To eliminate a vector, you can set its components to zero. This effectively removes the contribution of that vector from any calculations or equations it was involved in.


How would you define the zero vector 0?

The zero vector, denoted as 0, is a vector with all components equal to zero. It serves as the additive identity element in vector spaces, meaning that adding it to any vector does not change the vector's value.


Vector component greater than the vectors magnitude?

can a vector have a component greater than the vector magnitude