answersLogoWhite

0

In thermodynamics, adiabatic processes do not involve heat exchange, isothermal processes occur at constant temperature, and isobaric processes happen at constant pressure.

User Avatar

AnswerBot

3mo ago

What else can I help you with?

Continue Learning about Physics

What is the difference between adiabatic and isentropic processes in thermodynamics?

In thermodynamics, adiabatic processes do not involve heat transfer, while isentropic processes are reversible and adiabatic.


What is a quasi-static process and how does it differ from other types of processes in thermodynamics?

A quasi-static process in thermodynamics is a slow and gradual change in a system's state, where the system remains in equilibrium at all times. This process differs from other types of processes, such as adiabatic or isothermal processes, which may involve rapid changes or heat exchange with the surroundings. Quasi-static processes allow for accurate measurements and analysis of thermodynamic properties.


Why an adiabatic curve steeper than an iosthermal?

In isothermal the temperature is constant whereas in adiabatic the temperature falls or rises rapidly.Consider the case for expansion where in adiabatic the temperature drops. If you consider PV/T=constant then for same pressure we can show that as temp decreases the volume also decreases. During expansion for isothermal the temp does not change so volume is higher than adiabatic. Example: Isothermal P=8 Pa, V=x , T=2K Adiabatic P=8 Pa, V=y, T=1K (as it drops) Using PV/T=constant we can find that y is less than x.


What are the characteristics and significance of isothermal curves in thermodynamics?

Isothermal curves in thermodynamics represent processes that occur at a constant temperature. These curves are significant because they help us understand how heat and work are exchanged in a system without a change in temperature. By studying isothermal curves, we can analyze the behavior of gases and other substances under specific conditions, leading to a better understanding of thermodynamic processes.


What does the word adiabatic mean?

Adiabatic refers to a process in thermodynamics where there is no heat exchange with the surroundings. This means that the change in internal energy of the system is solely due to work being done on or by the system. Adiabatic processes are often rapid and can result in changes in temperature or pressure.

Related Questions

What is the difference between adiabatic and isentropic processes in thermodynamics?

In thermodynamics, adiabatic processes do not involve heat transfer, while isentropic processes are reversible and adiabatic.


Why carnot cycle is called a two adiabatic and two isothermal process?

Adiabatic means there's no heat transference during the process; Isothermal means the process occurs at constant temperature. The compression and expansion processes are adiabatic, whereas the heat transfer from the hot reservoir and to the cold reservoir are isothermal. Those are the two adiabatic and isothermal processes.


What are the key differences between adiabatic and isothermal processes on a PV diagram?

In an adiabatic process, there is no heat exchange with the surroundings, leading to steeper slopes on a PV diagram compared to an isothermal process where temperature remains constant. This results in different shapes and behaviors on the PV diagram for each process.


What are thermodynamic processes?

It means that the proces is somewhere between an isothermal and a adiabatic proces You have some heat transfer, but not all of it.


What are the thermodynamic processes?

It means that the proces is somewhere between an isothermal and a adiabatic proces You have some heat transfer, but not all of it.


Does a parcel of air that rises undergo isothermal expansion?

No, a parcel of air that rises undergoes adiabatic expansion, not isothermal expansion. This is because adiabatic processes involve changes in temperature due to the parcel's expansion or compression without any heat exchange with the surroundings, while isothermal processes involve constant temperature.


What is a quasi-static process and how does it differ from other types of processes in thermodynamics?

A quasi-static process in thermodynamics is a slow and gradual change in a system's state, where the system remains in equilibrium at all times. This process differs from other types of processes, such as adiabatic or isothermal processes, which may involve rapid changes or heat exchange with the surroundings. Quasi-static processes allow for accurate measurements and analysis of thermodynamic properties.


Why an adiabatic curve steeper than an iosthermal?

In isothermal the temperature is constant whereas in adiabatic the temperature falls or rises rapidly.Consider the case for expansion where in adiabatic the temperature drops. If you consider PV/T=constant then for same pressure we can show that as temp decreases the volume also decreases. During expansion for isothermal the temp does not change so volume is higher than adiabatic. Example: Isothermal P=8 Pa, V=x , T=2K Adiabatic P=8 Pa, V=y, T=1K (as it drops) Using PV/T=constant we can find that y is less than x.


What is the significance of adiabatic processes in thermodynamics, particularly when the heat transfer, represented by q, is equal to zero?

In thermodynamics, adiabatic processes are important because they involve no heat transfer (q0). This means that the system does not exchange heat with its surroundings, leading to changes in temperature and pressure. Adiabatic processes are key in understanding how energy is conserved and how systems behave when isolated from external heat sources.


What are the characteristics and significance of isothermal curves in thermodynamics?

Isothermal curves in thermodynamics represent processes that occur at a constant temperature. These curves are significant because they help us understand how heat and work are exchanged in a system without a change in temperature. By studying isothermal curves, we can analyze the behavior of gases and other substances under specific conditions, leading to a better understanding of thermodynamic processes.


What does the word adiabatic mean?

Adiabatic refers to a process in thermodynamics where there is no heat exchange with the surroundings. This means that the change in internal energy of the system is solely due to work being done on or by the system. Adiabatic processes are often rapid and can result in changes in temperature or pressure.


What are the thermodynamic polytropic processes?

Thermodynamic polytropic processes are processes that can be described using the polytropic equation ( PV^n = C ), where ( P ) is pressure, ( V ) is volume, ( N ) is the polytropic exponent, and ( C ) is a constant. These processes can encompass a range of behaviors, from isobaric to isothermal to adiabatic processes, depending on the value of the polytropic exponent.