answersLogoWhite

0

In an adiabatic process, there is no heat exchange with the surroundings, leading to steeper slopes on a PV diagram compared to an isothermal process where temperature remains constant. This results in different shapes and behaviors on the PV diagram for each process.

User Avatar

AnswerBot

7mo ago

What else can I help you with?

Continue Learning about Chemistry

What are the key differences between an adiabatic and isothermal graph in thermodynamics?

In thermodynamics, the key difference between an adiabatic and isothermal graph is how heat is transferred. In an adiabatic process, there is no heat exchange with the surroundings, while in an isothermal process, the temperature remains constant throughout the process.


What is the relationship between adiabatic processes and the change in enthalpy (H)?

In adiabatic processes, there is no heat exchange with the surroundings, so the change in enthalpy (H) is equal to the change in internal energy (U). This means that in adiabatic processes, the change in enthalpy is solely determined by the change in internal energy.


Is it possible to compress an ideal gas isothermally in an adiabatic piston cylinder device?

No, it isn't. This is because the first law relation Q - W = ΔU reduces to W = 0 in this case since the system is adiabatic (Q = 0) and ΔU = 0 for the isothermal processes of ideal gases. Therefore, this adiabatic system cannot receive any net work at constant temperature.


What is the relationship between enthalpy and temperature in an isothermal process?

In an isothermal process, the temperature remains constant. Therefore, the enthalpy change is directly proportional to the temperature change.


What does the PV diagram of an isothermal expansion illustrate?

The PV diagram of an isothermal expansion illustrates the relationship between pressure and volume during a process where the temperature remains constant.

Related Questions

What are the differences between adiabatic, isothermal, and isobaric processes in thermodynamics?

In thermodynamics, adiabatic processes do not involve heat exchange, isothermal processes occur at constant temperature, and isobaric processes happen at constant pressure.


What are the key differences between an adiabatic and isothermal graph in thermodynamics?

In thermodynamics, the key difference between an adiabatic and isothermal graph is how heat is transferred. In an adiabatic process, there is no heat exchange with the surroundings, while in an isothermal process, the temperature remains constant throughout the process.


What are the thermodynamic processes?

It means that the proces is somewhere between an isothermal and a adiabatic proces You have some heat transfer, but not all of it.


What are thermodynamic processes?

It means that the proces is somewhere between an isothermal and a adiabatic proces You have some heat transfer, but not all of it.


What is the difference between adiabatic and isentropic processes in thermodynamics?

In thermodynamics, adiabatic processes do not involve heat transfer, while isentropic processes are reversible and adiabatic.


What are the thermodynamic polytropic processes?

Thermodynamic polytropic processes are processes that can be described using the polytropic equation ( PV^n = C ), where ( P ) is pressure, ( V ) is volume, ( N ) is the polytropic exponent, and ( C ) is a constant. These processes can encompass a range of behaviors, from isobaric to isothermal to adiabatic processes, depending on the value of the polytropic exponent.


What is different between adiabatic system and isothermal system?

An isothremal process is one in which the temperature is constant. heat can be gained or lost in order to maintain a constant tempereature. An adiabatic process is one in which there is no heat exchange between a system and its surroundings. It does not matter whether the temperature of the system is constant or not.


Explain the Difference between adiabatic and isothermal compression?

"Adiabatic process" refers to processes that take place in a closed system with no heat interaction with it's surroundings. "Isentropic process" refers to processes that take place in a closed system with no heat interaction with the surroundings (adiabatic process) and internally reversible. This is, no internal generation of entropy, entropy stays constant, which is what is meant by "isentropic". We can also say, an isentropic process is one where entropy stays constant, and no heat interaction of the system with the surroundings takes place (adiabatic process). Or, an adiabatic process can be irreversible, or reversible (isentropic).


What is the relationship between adiabatic processes and the change in enthalpy (H)?

In adiabatic processes, there is no heat exchange with the surroundings, so the change in enthalpy (H) is equal to the change in internal energy (U). This means that in adiabatic processes, the change in enthalpy is solely determined by the change in internal energy.


Is it possible to compress an ideal gas isothermally in an adiabatic piston cylinder device?

No, it isn't. This is because the first law relation Q - W = ΔU reduces to W = 0 in this case since the system is adiabatic (Q = 0) and ΔU = 0 for the isothermal processes of ideal gases. Therefore, this adiabatic system cannot receive any net work at constant temperature.


What term refers to processes that do not involve heat transfer?

Adiabatic processes do not involve heat transfer between a system and its surroundings.


Why adiabatic is steeper than isotherm?

An adiabatic curve is steeper than an isothermal curve because it represents a process where no heat is exchanged with the surroundings, leading to a more significant change in pressure and temperature for a given volume change. In contrast, an isothermal process occurs at constant temperature, so the system can absorb heat to maintain that temperature, resulting in a more gradual slope on a pressure-volume diagram. Essentially, the lack of heat exchange in an adiabatic process restricts the system's ability to adjust temperature, causing a steeper relationship between pressure and volume changes.