When the mass of a white dwarf increases, its size decreases. This is because the increased mass causes the white dwarf to contract under its own gravity, making it smaller and denser.
If a white dwarf gained enough mass to reach the 1.4 solar-mass white dwarf limit, it would undergo a catastrophic event known as a Type Ia supernova. This explosion would release a tremendous amount of energy and result in the complete destruction of the white dwarf.
The upper limit to the mass of a white dwarf is about 1.4 times the mass of the Sun, known as the Chandrasekhar limit. Beyond this point, the white dwarf may collapse and explode in a supernova event.
That's called a "black dwarf". Such objects are hypothetical; they are not expected to exist yet, since it takes a white dwarf longer, to cool down to a black dwarf, than the current age of the Universe.
If an object's mass remains constant but its volume is increased, then the density of the object decreases. This is because density is calculated by dividing an object's mass by its volume, so increasing the volume while keeping the mass constant leads to a lower density value.
The Sun will eventually end up as a white dwarf, a dense, Earth-sized remnant of a star. This will happen after it exhausts its nuclear fuel and sheds its outer layers into space, forming a planetary nebula.
What actually happens to the types of stars is that the low mass will turn into a white dwarf and the medium mass will turn into a black dwarf and reproduce a nebula
The blue star gains a little more mass.
A white dwarf is the remnant of a low to medium mass star.
If a white dwarf gained enough mass to reach the 1.4 solar-mass white dwarf limit, it would undergo a catastrophic event known as a Type Ia supernova. This explosion would release a tremendous amount of energy and result in the complete destruction of the white dwarf.
The upper limit to the mass of a white dwarf is about 1.4 times the mass of the Sun, known as the Chandrasekhar limit. Beyond this point, the white dwarf may collapse and explode in a supernova event.
No. A white dwarf is the remnant of a low to medium mass star.
A white dwarf could not become a red dwarf. A white dwarf is a remnant of a dead star. A red dwarf is a star with a very low mass.
A white dwarf, also called a degenerate dwarf, is a small star composed mostly of electron-degenerate matter. They are very dense; a white dwarf's mass is comparable to that of the Sun and its volume is comparable to that of the Earth.
Then, depending on the remaining mass of the star, it will collapse into a white dwarf, a neutron star (aka pulsar), or a black hole.Then, depending on the remaining mass of the star, it will collapse into a white dwarf, a neutron star (aka pulsar), or a black hole.Then, depending on the remaining mass of the star, it will collapse into a white dwarf, a neutron star (aka pulsar), or a black hole.Then, depending on the remaining mass of the star, it will collapse into a white dwarf, a neutron star (aka pulsar), or a black hole.
If the mass of a white dwarf reaches the 1.4 solar mass limit, it will no longer be able to support itself against gravity through electron degeneracy pressure. This will trigger a runaway fusion reaction of carbon and oxygen, leading to a supernova explosion known as a Type Ia supernova.
Not necessarily. A white dwarf is simply the remains of a low to medium mass star that has died. A red dwarf is a low mass star. Since red dwarfs last longer than medium mass stars, one could easily be older than a white dwarf.
white dwarf