Increasing the horizontal velocity to the maximum in a projectile motion will cause the object to travel further horizontally before hitting the ground. This is because the horizontal velocity determines how far the object will travel in the horizontal direction before gravity pulls it down. The vertical motion of the object will remain the same, but the increased horizontal velocity will result in a longer horizontal distance traveled.
If there wouldn't be air resistance and gravity is the only thing that is effecting the projectile, the projectile will start to fall but it horizontal velocity will remain the same. So it would slow down, it would only change height.
The velocity of a projectile at its maximum height is zero. This is because at the highest point of the projectile's trajectory, all of its initial kinetic energy has been converted into potential energy, causing the velocity to momentarily become zero.
Depending on the shape, speed and change in attitude (especially a tendency to tumble) of the projectile its losses of speed at various instants along its trajectory could be quite considerable owing to friction. Under many conditions air friction is proportional to the fourth power of speed. Thus, the horizontal component of the trajectory could be subject to considerable loss of magnitude. As one would expect the shape of the projectile will affect it's path considerably too.
If the mass stays the same but the velocity is increased, the momentum of the object will also increase. Momentum is directly proportional to velocity, so an increase in velocity will result in a proportionate increase in momentum.
The horizontal velocity will be equal to the translational velocity of the ball right before it falls off the table. ============================== When we do exercises that deal with the behavior of the ball after it leaves the edge of the table, we always ignore air resistance. When we do that, the horizontal component of velocity remains constant forever, or at least until the ball hits something.
If there wouldn't be air resistance and gravity is the only thing that is effecting the projectile, the projectile will start to fall but it horizontal velocity will remain the same. So it would slow down, it would only change height.
The velocity of a projectile at its maximum height is zero. This is because at the highest point of the projectile's trajectory, all of its initial kinetic energy has been converted into potential energy, causing the velocity to momentarily become zero.
Depending on the shape, speed and change in attitude (especially a tendency to tumble) of the projectile its losses of speed at various instants along its trajectory could be quite considerable owing to friction. Under many conditions air friction is proportional to the fourth power of speed. Thus, the horizontal component of the trajectory could be subject to considerable loss of magnitude. As one would expect the shape of the projectile will affect it's path considerably too.
At the top of its path, the vertical component of the projectile's velocity is zero, making the overall speed minimum. This occurs because gravity slows down the projectile's upward motion until it stops momentarily before falling back down. The horizontal component of the velocity remains constant throughout the motion.
If the mass stays the same but the velocity is increased, the momentum of the object will also increase. Momentum is directly proportional to velocity, so an increase in velocity will result in a proportionate increase in momentum.
The horizontal velocity will be equal to the translational velocity of the ball right before it falls off the table. ============================== When we do exercises that deal with the behavior of the ball after it leaves the edge of the table, we always ignore air resistance. When we do that, the horizontal component of velocity remains constant forever, or at least until the ball hits something.
In the absence of air friction, a projectile will follow a predictable parabolic trajectory determined by its initial velocity and launch angle. The projectile will continue to move freely in a straight line unless acted upon by an external force like gravity.
If mass increases, momentum will also increase, assuming velocity remains constant. Momentum is the product of mass and velocity, so an increase in mass would lead to a proportional increase in momentum with a constant velocity.
If the acceleration changes, the velocity of an object will also change. If the acceleration increases, the velocity will increase. If the acceleration decreases, the velocity will decrease. The velocity and acceleration of an object are directly related.
If the force opposes the motion, it will reduce the velocity and the momentum of the body will decrease. If the force is in the direction of the motion, the velocity will increase and the momentum will increase.
The velocity of a ball rolling down a hill will increase due to the acceleration caused by the pull of gravity. As the ball gains speed, its velocity will continue to increase until it reaches the bottom of the hill.
From the Bernoulli equation, pressure drop increases with the square of velocity. So if the velocity is doubled the pressure drop will increase by a factor of four.