Nuclear radiation comes from the nucleus of an atom and includes alpha, beta, and gamma rays. Electromagnetic radiation comes from the movement of electrically charged particles and includes visible light, radio waves, and X-rays.
Both microwave radiation and nuclear electromagnetic radiation are members of the same species, but they're as different as babies are from elephants, to wit, microwaves are much, much less powerful than nuclear electromagnetic radiation. Microwave radiation, for instance, makes atoms shift their position (and magnetic fields) very, very quickly. Now the definition of heat is "movement," so the faster anything moves, the "hotter" we say it is. Ergo, something placed in a microwave-radiation-field becomes noticeably "hotter." But comparing microwave and nuclear electromagnetic radiation is like comparing a face-slap to a 20-ton BOMB. Nuclear radiation comes from atomic nuclei, so "nuclear radiation" can strike, penetrate, damage, and even destroy atoms in their path. Big difference, capiche? Huge.We left out the part about nuclear particulate radiation. There is no comparison there. Additionally, nuclear electromagnetic radiation is ionizing radiation while microwave radiation is not.
Yes, radiation is a broader term that refers to the emission and propagation of energy through space or a material medium. Nuclear radiation specifically refers to the particles and electromagnetic radiation emitted from the nucleus of an atom, typically during a nuclear reaction such as radioactive decay or nuclear fission.
The main difference is that radiation emitted by uranium is due to the natural radioactive decay of its nucleus, while X-rays are electromagnetic radiation produced by accelerating charged particles. This led to the conclusion that X-rays are a form of light, whereas uranium radiation is a result of nuclear processes.
Heat radiation is infrared radiation, which is a relatively low frequency radiation, slightly lower than that of visible light. Nuclear radiation includes a variety of types, including X rays and gamma rays, which are very high frequency radiation, and which are consequently much more dangerous, and can cause radiation sickness. There are also other types of nuclear radiation such as alpha rays, beta rays, and neutrons, all of which are in the form of subatomic particles rather than electromagnetic radiation.
Yes, nuclear bombs produce gamma radiation as a result of the nuclear fission or fusion reactions that release high-energy photons. Gamma radiation is a form of electromagnetic radiation that accompanies the explosion of nuclear devices.
fallout emits nuclear radiation, but lots of other things do too.fallout is particulates from dust size to baseball size, nuclear radiation is a mix of electromagnetic radiation and high speed subatomic particles.
Both microwave radiation and nuclear electromagnetic radiation are members of the same species, but they're as different as babies are from elephants, to wit, microwaves are much, much less powerful than nuclear electromagnetic radiation. Microwave radiation, for instance, makes atoms shift their position (and magnetic fields) very, very quickly. Now the definition of heat is "movement," so the faster anything moves, the "hotter" we say it is. Ergo, something placed in a microwave-radiation-field becomes noticeably "hotter." But comparing microwave and nuclear electromagnetic radiation is like comparing a face-slap to a 20-ton BOMB. Nuclear radiation comes from atomic nuclei, so "nuclear radiation" can strike, penetrate, damage, and even destroy atoms in their path. Big difference, capiche? Huge.We left out the part about nuclear particulate radiation. There is no comparison there. Additionally, nuclear electromagnetic radiation is ionizing radiation while microwave radiation is not.
Yes, radiation is a broader term that refers to the emission and propagation of energy through space or a material medium. Nuclear radiation specifically refers to the particles and electromagnetic radiation emitted from the nucleus of an atom, typically during a nuclear reaction such as radioactive decay or nuclear fission.
Nuclear radiation is not affected at all, but radiation by Electromagnetic Radiation is. This is a straight Physics topic, not Nuclear Energy.
No.
The main difference is that radiation emitted by uranium is due to the natural radioactive decay of its nucleus, while X-rays are electromagnetic radiation produced by accelerating charged particles. This led to the conclusion that X-rays are a form of light, whereas uranium radiation is a result of nuclear processes.
Heat radiation is infrared radiation, which is a relatively low frequency radiation, slightly lower than that of visible light. Nuclear radiation includes a variety of types, including X rays and gamma rays, which are very high frequency radiation, and which are consequently much more dangerous, and can cause radiation sickness. There are also other types of nuclear radiation such as alpha rays, beta rays, and neutrons, all of which are in the form of subatomic particles rather than electromagnetic radiation.
Yes, nuclear bombs produce gamma radiation as a result of the nuclear fission or fusion reactions that release high-energy photons. Gamma radiation is a form of electromagnetic radiation that accompanies the explosion of nuclear devices.
During nuclear reactions, gamma rays are produced as a form of electromagnetic radiation. Gamma rays are the most energetic and penetrating type of electromagnetic radiation, and they are produced when the nucleus of an atom undergoes a change.
Gamma Rays
The gamma wave is.
Nuclear fusion in the core.