answersLogoWhite

0

The equation for the period of a pendulum is T 2(L/g), where T is the period, L is the length of the pendulum, and g is the acceleration due to gravity. The period is calculated by taking the square root of the ratio of the length of the pendulum to the acceleration due to gravity, and then multiplying by 2.

User Avatar

AnswerBot

6mo ago

What else can I help you with?

Related Questions

What is the physics equation for the period of a pendulum?

The physics equation for the period of a pendulum is T 2(L/g), where T is the period, L is the length of the pendulum, and g is the acceleration due to gravity.


What is the equation for the period of a simple pendulum?

The equation for the period (T) of a simple pendulum is T = 2π√(L/g), where L is the length of the pendulum and g is the acceleration due to gravity.


What is the period of a 0.85m long pendulum?

The period of a pendulum can be calculated using the equation T = 2π√(l/g), where T is the period in seconds, l is the length of the pendulum in meters, and g is the acceleration due to gravity (9.81 m/s^2). Substituting the values, the period of a 0.85m long pendulum is approximately 2.43 seconds.


What is the equation used to calculate period?

The period of a wave or oscillation is calculated using the equation ( T = \frac{1}{f} ), where ( T ) is the period (in seconds) and ( f ) is the frequency (in hertz). Alternatively, for a pendulum, the period can also be approximated by the equation ( T = 2\pi \sqrt{\frac{L}{g}} ), where ( L ) is the length of the pendulum and ( g ) is the acceleration due to gravity.


What happens to the period o a pendulum when its length is increased?

If the length of a pendulum is increased, the period of the pendulum also increases. This relationship is described by the equation for the period of a pendulum, which is directly proportional to the square root of the length of the pendulum. This means that as the length increases, the period also increases.


How do you calculate the period of a pendulum?

The period of a pendulum can be calculated using the formula T 2(L/g), where T is the period, L is the length of the pendulum, and g is the acceleration due to gravity.


Why does the mass of pendulum not affect its period?

The period of a pendulum is influenced by the length of the pendulum and the acceleration due to gravity. The mass of the pendulum does not affect the period because the force of gravity acts on the entire pendulum mass, causing it to accelerate at the same rate regardless of its mass. This means that the mass cancels out in the equation for the period of a pendulum.


Why time period of simple pendulum is independent of mass?

The time period of a simple pendulum depends only on the length of the pendulum and the acceleration due to gravity, not the mass of the pendulum bob. This is because the mass cancels out in the equation for the time period, leaving only the factors that affect the motion of the pendulum.


How to calculate the period of a pendulum?

The period of a pendulum can be calculated using the formula T 2(L/g), where T is the period, L is the length of the pendulum, and g is the acceleration due to gravity (approximately 9.81 m/s2).


What is the length of a pendulum with a period of 4.48ses?

The equation for the length, L, of a pendulum of time period, T, is gievn byL = g(T2/4?2),where g is the acceleration due to gravity. So, for a pendulum of time period 4.48 sec, the length of the pendulum is 4.99 metres (3 s.f).


How can the period of a pendulum be calculated?

Without going through all the derivations, unless some one wants me to (I could show you my physics notes), the equation for a period of a pendulum with small amplitude (meaning reasonable amplitudes, i.e. less than 45O from the normal) is : T = 2 * Pi * sqrt(L / g) where L is the length of the pendulum g is the acceleration due to gravity where ever the pendulum is (9.8 m/s2 on earth)


How can one determine the period of a pendulum?

The period of a pendulum can be determined by measuring the time it takes for the pendulum to complete one full swing back and forth. The period is the time it takes for the pendulum to return to its starting position. It can be calculated using the formula T 2(L/g), where T is the period, L is the length of the pendulum, and g is the acceleration due to gravity.