The equation for the period (T) of a simple pendulum is T = 2π√(L/g), where L is the length of the pendulum and g is the acceleration due to gravity.
The time period of a simple pendulum depends only on the length of the pendulum and the acceleration due to gravity, not the mass of the pendulum bob. This is because the mass cancels out in the equation for the time period, leaving only the factors that affect the motion of the pendulum.
The physics equation for the period of a pendulum is T 2(L/g), where T is the period, L is the length of the pendulum, and g is the acceleration due to gravity.
The time period of a simple pendulum is determined by the length of the pendulum, the acceleration due to gravity, and the angle at which the pendulum is released. The formula for the time period of a simple pendulum is T = 2π√(L/g), where T is the time period, L is the length of the pendulum, and g is the acceleration due to gravity.
The equation for the period of a pendulum is T 2(L/g), where T is the period, L is the length of the pendulum, and g is the acceleration due to gravity. The period is calculated by taking the square root of the ratio of the length of the pendulum to the acceleration due to gravity, and then multiplying by 2.
Compound pendulum is a physical pendulum whereas a simple pendulum is ideal pendulum. The difference is that in simple pendulum centre of mass and centre of oscillation are at the same distance.
The time period of a simple pendulum depends only on the length of the pendulum and the acceleration due to gravity, not the mass of the pendulum bob. This is because the mass cancels out in the equation for the time period, leaving only the factors that affect the motion of the pendulum.
The physics equation for the period of a pendulum is T 2(L/g), where T is the period, L is the length of the pendulum, and g is the acceleration due to gravity.
The time period of a simple pendulum is determined by the length of the pendulum, the acceleration due to gravity, and the angle at which the pendulum is released. The formula for the time period of a simple pendulum is T = 2π√(L/g), where T is the time period, L is the length of the pendulum, and g is the acceleration due to gravity.
The equation for the period of a pendulum is T 2(L/g), where T is the period, L is the length of the pendulum, and g is the acceleration due to gravity. The period is calculated by taking the square root of the ratio of the length of the pendulum to the acceleration due to gravity, and then multiplying by 2.
The period increases as the square root of the length.
Compound pendulum is a physical pendulum whereas a simple pendulum is ideal pendulum. The difference is that in simple pendulum centre of mass and centre of oscillation are at the same distance.
The time period of a simple pendulum is independent of mass because the formula for the time period only depends on the length of the pendulum and the acceleration due to gravity. The mass of the pendulum bob does not affect the time it takes for one complete swing because the force due to gravity acts equally on all masses. This makes the mass cancel out in the equation, resulting in a time period that is mass-independent.
The physical parameters that might influence the period of a simple pendulum are the length of the pendulum, the acceleration due to gravity, and the mass of the pendulum bob. A longer pendulum will have a longer period, while a higher acceleration due to gravity or a heavier pendulum bob will result in a shorter period.
time period of simple pendulum is dirctly proportional to sqare root of length...
For a simple pendulum: Period = 6.3437 (rounded) seconds
The period increases - by a factor of sqrt(2).
multiply the length of the pendulum by 4, the period doubles. the period is proportional to the square of the pendulum length.