answersLogoWhite

0

The equation that relates strain to stress in a material under deformation is known as Hooke's Law, which is expressed as stress Young's Modulus strain.

User Avatar

AnswerBot

4mo ago

What else can I help you with?

Continue Learning about Physics

What is the stress vs strain equation used to determine the relationship between the applied force and resulting deformation in a material?

The stress vs strain equation, also known as Hooke's Law, is used to determine the relationship between the applied force and resulting deformation in a material. It is expressed as stress E strain, where stress is the force applied to the material, strain is the resulting deformation, and E is the material's Young's Modulus, which represents its stiffness.


What is the plastic deformation formula used to calculate the extent of permanent deformation in a material under stress?

The plastic deformation formula used to calculate the extent of permanent deformation in a material under stress is typically represented by the equation: ( / E), where is the strain (deformation), is the stress applied to the material, and E is the material's Young's modulus.


How to calculate plastic strain in a material under deformation?

To calculate plastic strain in a material under deformation, you can use the formula: Plastic Strain Total Strain - Elastic Strain. Plastic strain is the permanent deformation that occurs in a material after it has exceeded its elastic limit. It is important to consider when analyzing the behavior of materials under stress.


What is the formula to calculate the total strain experienced by a material under a given load?

The formula to calculate total strain is: Total Strain Elastic Strain Plastic Strain. Elastic strain is the initial deformation of the material under load, while plastic strain is the permanent deformation after the material reaches its yield point.


What is the stress over strain equation used for in the field of material science and engineering?

The stress over strain equation is used in material science and engineering to calculate the relationship between the force applied to a material (stress) and the resulting deformation or change in shape (strain). This equation helps engineers understand how materials respond to external forces and predict their behavior under different conditions.

Related Questions

What is the stress vs strain equation used to determine the relationship between the applied force and resulting deformation in a material?

The stress vs strain equation, also known as Hooke's Law, is used to determine the relationship between the applied force and resulting deformation in a material. It is expressed as stress E strain, where stress is the force applied to the material, strain is the resulting deformation, and E is the material's Young's Modulus, which represents its stiffness.


What is the plastic deformation formula used to calculate the extent of permanent deformation in a material under stress?

The plastic deformation formula used to calculate the extent of permanent deformation in a material under stress is typically represented by the equation: ( / E), where is the strain (deformation), is the stress applied to the material, and E is the material's Young's modulus.


How to calculate plastic strain in a material under deformation?

To calculate plastic strain in a material under deformation, you can use the formula: Plastic Strain Total Strain - Elastic Strain. Plastic strain is the permanent deformation that occurs in a material after it has exceeded its elastic limit. It is important to consider when analyzing the behavior of materials under stress.


What is the deformation between strain and deformation?

First of all i guess the right question is difference between strain and deformation. Actually the strain is deformation in a material over its original length. So strain is a relative quantity while deformation is simply change in length, hence absolute and is new length minus original length. Strain= deformation(L2-L1)/original length(L1)


What is the formula to calculate the total strain experienced by a material under a given load?

The formula to calculate total strain is: Total Strain Elastic Strain Plastic Strain. Elastic strain is the initial deformation of the material under load, while plastic strain is the permanent deformation after the material reaches its yield point.


What is the stress over strain equation used for in the field of material science and engineering?

The stress over strain equation is used in material science and engineering to calculate the relationship between the force applied to a material (stress) and the resulting deformation or change in shape (strain). This equation helps engineers understand how materials respond to external forces and predict their behavior under different conditions.


How does the material's strain affect its behavior in terms of deflection?

The material's strain, or deformation, affects its behavior in terms of deflection by determining how much the material will bend or change shape when a force is applied to it. Higher strain can lead to greater deflection, while lower strain results in less bending or deformation.


What is the relationship between viscosity and strain in materials under deformation?

The relationship between viscosity and strain in materials under deformation is that viscosity is a measure of a material's resistance to flow, while strain is the amount of deformation a material undergoes when subjected to stress. In general, materials with higher viscosity tend to exhibit less strain under deformation, as they are more resistant to flow and deformation. Conversely, materials with lower viscosity are more likely to experience higher levels of strain when deformed, as they flow more easily.


What is the difference between normal strain and shear strain?

The normal strain is a deformation caused by normal forces such as Tension or Compression that act perpendicular to the cross-sectional area, while the shear strain is a deformation obtained from forces acting parallel or tangential to the cross-sectional area.


How to calculate deformation in a material under stress?

To calculate deformation in a material under stress, you can use the formula for strain, which is the change in length divided by the original length of the material. This can be represented as L / L, where is the strain, L is the change in length, and L is the original length of the material. By measuring the change in length and the original length, you can determine the deformation of the material under stress.


How to calculate strain energy in a material?

To calculate strain energy in a material, you can use the formula: Strain Energy 0.5 x Stress x Strain. Stress is the force applied to the material, and strain is the resulting deformation. Multiply stress and strain, then divide by 2 to find the strain energy.


What is the relationship between volume strain and the deformation of a material under stress?

Volume strain refers to the change in volume of a material when it is subjected to stress. When a material is deformed under stress, it can experience volume strain, which is the result of the material's particles moving closer together or farther apart. The relationship between volume strain and deformation is that as the material deforms, its volume may change due to the stress applied to it.