answersLogoWhite

0

The plastic deformation formula used to calculate the extent of permanent deformation in a material under stress is typically represented by the equation: ( / E), where is the strain (deformation), is the stress applied to the material, and E is the material's Young's modulus.

User Avatar

AnswerBot

4mo ago

What else can I help you with?

Continue Learning about Physics

What is the formula to calculate the total strain experienced by a material under a given load?

The formula to calculate total strain is: Total Strain Elastic Strain Plastic Strain. Elastic strain is the initial deformation of the material under load, while plastic strain is the permanent deformation after the material reaches its yield point.


How to calculate plastic strain in a material under deformation?

To calculate plastic strain in a material under deformation, you can use the formula: Plastic Strain Total Strain - Elastic Strain. Plastic strain is the permanent deformation that occurs in a material after it has exceeded its elastic limit. It is important to consider when analyzing the behavior of materials under stress.


How to calculate deformation in a material under stress?

To calculate deformation in a material under stress, you can use the formula for strain, which is the change in length divided by the original length of the material. This can be represented as L / L, where is the strain, L is the change in length, and L is the original length of the material. By measuring the change in length and the original length, you can determine the deformation of the material under stress.


What is the stress vs strain formula used to calculate the relationship between the applied force and resulting deformation in a material?

The stress vs strain formula is used to calculate the relationship between the applied force and resulting deformation in a material. It is expressed as stress force/area and strain change in length/original length.


What is the true stress and true strain formula used to calculate the mechanical properties of a material under deformation?

The true stress formula is: True Stress Load / Area The true strain formula is: True Strain ln(Length after deformation / Original Length)

Related Questions

What is the formula to calculate the total strain experienced by a material under a given load?

The formula to calculate total strain is: Total Strain Elastic Strain Plastic Strain. Elastic strain is the initial deformation of the material under load, while plastic strain is the permanent deformation after the material reaches its yield point.


How to calculate plastic strain in a material under deformation?

To calculate plastic strain in a material under deformation, you can use the formula: Plastic Strain Total Strain - Elastic Strain. Plastic strain is the permanent deformation that occurs in a material after it has exceeded its elastic limit. It is important to consider when analyzing the behavior of materials under stress.


How to calculate deformation in a material under stress?

To calculate deformation in a material under stress, you can use the formula for strain, which is the change in length divided by the original length of the material. This can be represented as L / L, where is the strain, L is the change in length, and L is the original length of the material. By measuring the change in length and the original length, you can determine the deformation of the material under stress.


What is the stress vs strain formula used to calculate the relationship between the applied force and resulting deformation in a material?

The stress vs strain formula is used to calculate the relationship between the applied force and resulting deformation in a material. It is expressed as stress force/area and strain change in length/original length.


What is the true stress and true strain formula used to calculate the mechanical properties of a material under deformation?

The true stress formula is: True Stress Load / Area The true strain formula is: True Strain ln(Length after deformation / Original Length)


How to calculate strain energy in a material?

To calculate strain energy in a material, you can use the formula: Strain Energy 0.5 x Stress x Strain. Stress is the force applied to the material, and strain is the resulting deformation. Multiply stress and strain, then divide by 2 to find the strain energy.


How can one calculate strain from stress in a material?

To calculate strain from stress in a material, you can use the formula: Strain Stress / Young's Modulus. Stress is the force applied to the material, and Young's Modulus is a measure of the material's stiffness. By dividing the stress by the Young's Modulus, you can determine the amount of deformation or strain the material undergoes under the applied stress.


How to calculate strain from stress?

To calculate strain from stress, you can use the formula: Strain Stress / Young's Modulus. Stress is the force applied to an object, while Young's Modulus is a measure of the stiffness of the material. By dividing the stress by the Young's Modulus, you can determine the strain, which is the amount of deformation the material undergoes in response to the stress.


How to calculate strain in a material under stress?

To calculate strain in a material under stress, you can use the formula: Strain Change in length / Original length. This formula helps you determine how much a material deforms under stress.


What is the formula to calculate prime costs?

Formula for Prime Cost = Material Cost + Labor Cost


What is the work function formula used to calculate the minimum energy required to remove an electron from a material?

The work function formula is given by: ( textWork Function textEnergy of Incident Photon - textKinetic Energy of Ejected Electron ) This formula is used to calculate the minimum energy needed to remove an electron from a material.


What is the stress-strain relationship formula used to calculate the mechanical behavior of a material under loading conditions?

The stress-strain relationship formula used to calculate the mechanical behavior of a material under loading conditions is typically represented by the equation: Stress Young's Modulus x Strain. This formula helps to understand how a material deforms and responds to applied forces.