answersLogoWhite

0

The formula for calculating the period of a pendulum is T 2(L/g), where T is the period, L is the length of the pendulum, and g is the acceleration due to gravity.

User Avatar

AnswerBot

3mo ago

What else can I help you with?

Related Questions

What is the formula for calculating the amplitude of a pendulum?

The formula for calculating the amplitude of a pendulum is given by the equation: amplitude maximum angle of swing.


How to find the frequency of a pendulum?

The frequency of a pendulum can be found by dividing the number of swings it makes in a given time period by that time period. The formula for calculating the frequency of a pendulum is: frequency 1 / time period. The time period is the time it takes for the pendulum to complete one full swing back and forth.


What is the formula for calculating the angular frequency of a simple pendulum?

The formula for calculating the angular frequency of a simple pendulum is (g / L), where represents the angular frequency, g is the acceleration due to gravity, and L is the length of the pendulum.


How do you calculate the period of a pendulum?

The period of a pendulum can be calculated using the formula T 2(L/g), where T is the period, L is the length of the pendulum, and g is the acceleration due to gravity.


What is the formula for the period of a pendulum in terms of the square root of the ratio of the acceleration due to gravity to the length of the pendulum?

The formula for the period of a pendulum in terms of the square root of the ratio of the acceleration due to gravity to the length of the pendulum is T 2(L/g), where T is the period, L is the length of the pendulum, and g is the acceleration due to gravity.


Why does accerlation due to gravity affect the period of a pendulum?

The period of a pendulum is give approximately by the formula t = 2*pi*sqrt(l/g) where l is the length of the pendulum and g is the acceleration (not accerlation) due to gravity. Thus g is part of the formula for the period.


What factors determine the time period of the simple pendulum?

The time period of a simple pendulum is determined by the length of the pendulum, the acceleration due to gravity, and the angle at which the pendulum is released. The formula for the time period of a simple pendulum is T = 2π√(L/g), where T is the time period, L is the length of the pendulum, and g is the acceleration due to gravity.


What is the relationship between the period of a pendulum and the pendulum length?

The period of a pendulum is directly proportional to the square root of its length. This means that as the pendulum length increases, the period also increases. This relationship is described by the formula T = 2π √(L/g), where T is the period, L is the length of the pendulum, and g is the acceleration due to gravity.


How to calculate the period of a pendulum?

The period of a pendulum can be calculated using the formula T 2(L/g), where T is the period, L is the length of the pendulum, and g is the acceleration due to gravity (approximately 9.81 m/s2).


What is the formula for the period of a pendulum?

t = k root l/g


What are conditions used while calculating time period of simple pendulum?

The time period of a simple pendulum is calculated using the following conditions: Length of the pendulum: The longer the length of the pendulum, the longer it takes for one complete back-and-forth swing. Acceleration due to gravity: The time period is inversely proportional to the square root of the acceleration due to gravity. Higher gravity results in a shorter time period. Angle of displacement: The time period is slightly affected by the initial angle of displacement, but this effect becomes negligible for small angles.


What is the length of second pendelum?

The length of a pendulum affects its period of oscillation, but to determine the length of a specific pendulum, you would need to measure it. The formula for the period of a pendulum is T = 2π√(L/g), where T is the period, L is the length of the pendulum, and g is the acceleration due to gravity.