answersLogoWhite

0

The formula for the period of a pendulum in terms of the square root of the ratio of the acceleration due to gravity to the length of the pendulum is T 2(L/g), where T is the period, L is the length of the pendulum, and g is the acceleration due to gravity.

User Avatar

AnswerBot

3mo ago

What else can I help you with?

Continue Learning about Physics

What is the formula for the angular frequency of a simple pendulum in terms of the acceleration due to gravity and the length of the pendulum?

The formula for the angular frequency () of a simple pendulum is (g / L), where g is the acceleration due to gravity and L is the length of the pendulum.


What is the formula for calculating the period of a pendulum?

The formula for calculating the period of a pendulum is T 2(L/g), where T is the period, L is the length of the pendulum, and g is the acceleration due to gravity.


What factors determine the time period of the simple pendulum?

The time period of a simple pendulum is determined by the length of the pendulum, the acceleration due to gravity, and the angle at which the pendulum is released. The formula for the time period of a simple pendulum is T = 2π√(L/g), where T is the time period, L is the length of the pendulum, and g is the acceleration due to gravity.


What does the frequency of a pendulum depend on?

The frequency of a pendulum depends on the length of the pendulum and the acceleration due to gravity. It is described by the equation f = 1 / (2π) * √(g / L), where f is the frequency, g is the acceleration due to gravity, and L is the length of the pendulum.


What time does the pendulum take for one swing?

The time it takes for a pendulum to complete one full swing is determined by the length of the pendulum and the acceleration due to gravity. The formula for the period of a pendulum is T = 2π√(l/g), where T is the period, l is the length of the pendulum, and g is the acceleration due to gravity. Typically, a pendulum with a length of 1 meter will take about 2 seconds to complete one swing.

Related Questions

What is the formula for the angular frequency of a simple pendulum in terms of the acceleration due to gravity and the length of the pendulum?

The formula for the angular frequency () of a simple pendulum is (g / L), where g is the acceleration due to gravity and L is the length of the pendulum.


What is the formula for calculating the period of a pendulum?

The formula for calculating the period of a pendulum is T 2(L/g), where T is the period, L is the length of the pendulum, and g is the acceleration due to gravity.


What factors determine the time period of the simple pendulum?

The time period of a simple pendulum is determined by the length of the pendulum, the acceleration due to gravity, and the angle at which the pendulum is released. The formula for the time period of a simple pendulum is T = 2π√(L/g), where T is the time period, L is the length of the pendulum, and g is the acceleration due to gravity.


If i had a pendulum clock a meter stick and a stopwatch could I find the acceleration of gravity on the moon?

The time it takes a pendulum to complete a full swing is given by the formula: T = 2 pi sqrt(L/g) where L is the length of the pendulum, and g is acceleration due to gravity. With a little algebra we can rearrange this to get: g = (2 pi / T)^2 L So measure the length of your pendulum to get L, then measure how long it takes for a complete swing, plug it into the formula, and there's your acceleration due to gravity. You can try it here on Earth and see what you get.


What does the frequency of a pendulum depend on?

The frequency of a pendulum depends on the length of the pendulum and the acceleration due to gravity. It is described by the equation f = 1 / (2π) * √(g / L), where f is the frequency, g is the acceleration due to gravity, and L is the length of the pendulum.


What time does the pendulum take for one swing?

The time it takes for a pendulum to complete one full swing is determined by the length of the pendulum and the acceleration due to gravity. The formula for the period of a pendulum is T = 2π√(l/g), where T is the period, l is the length of the pendulum, and g is the acceleration due to gravity. Typically, a pendulum with a length of 1 meter will take about 2 seconds to complete one swing.


How can pendulum be used to determine local gravitational acceleration?

A pendulum's period is affected by the local gravitational acceleration. By measuring the time it takes for the pendulum to complete one full swing, the gravitational acceleration can be calculated using the formula g = 4π²L/T², where g is the acceleration due to gravity, L is the length of the pendulum, and T is the period of the pendulum's swing. By rearranging this formula, the local gravitational acceleration can be determined.


What is the formula for calculating the angular frequency of a simple pendulum?

The formula for calculating the angular frequency of a simple pendulum is (g / L), where represents the angular frequency, g is the acceleration due to gravity, and L is the length of the pendulum.


How do you calculate the period of a pendulum?

The period of a pendulum can be calculated using the formula T 2(L/g), where T is the period, L is the length of the pendulum, and g is the acceleration due to gravity.


What is the length of second pendelum?

The length of a pendulum affects its period of oscillation, but to determine the length of a specific pendulum, you would need to measure it. The formula for the period of a pendulum is T = 2π√(L/g), where T is the period, L is the length of the pendulum, and g is the acceleration due to gravity.


Why does accerlation due to gravity affect the period of a pendulum?

The period of a pendulum is give approximately by the formula t = 2*pi*sqrt(l/g) where l is the length of the pendulum and g is the acceleration (not accerlation) due to gravity. Thus g is part of the formula for the period.


What is the effect of changing length or mass of the pendulum on the value of g?

Changing the length or mass of a pendulum does not affect the value of acceleration due to gravity (g). The period of a pendulum depends on the length of the pendulum and not on its mass. The formula for the period of a pendulum is T = 2π√(L/g), where T is the period, L is the length of the pendulum, and g is the acceleration due to gravity.