answersLogoWhite

0

When a magnetic field is applied to a coil, it creates an induced electromotive force (emf) in the coil. This emf is generated due to the change in magnetic flux through the coil, according to Faraday's law of electromagnetic induction.

User Avatar

AnswerBot

6mo ago

What else can I help you with?

Continue Learning about Physics

What is the factors on which the induced EMF in a coil rotating in a uniform magnetic field depends?

The induced EMF in a coil rotating in a uniform magnetic field depends on the strength of the magnetic field, the number of turns in the coil, the area of the coil, the speed of rotation, and the angle between the magnetic field and the plane of the coil.


What is the direction of the induced current in a coil when it is exposed to a changing magnetic field?

When a coil is exposed to a changing magnetic field, an induced current is generated in the coil. The direction of this induced current is such that it creates a magnetic field that opposes the change in the original magnetic field. This phenomenon is described by Faraday's law of electromagnetic induction.


What is the formula to calculate the average induced emf in a coil when it is rotated in a magnetic field?

The formula to calculate the average induced emf in a coil when it is rotated in a magnetic field is given by: Average Induced EMF N B A sin() Where: N number of turns in the coil B magnetic field strength A area of the coil angular velocity of rotation angle between the magnetic field and the normal to the coil


What is the relationship between the induced voltage in a two-coil system and the magnetic field strength?

The induced voltage in a two-coil system is directly proportional to the magnetic field strength. As the magnetic field strength increases, the induced voltage in the coils also increases.


In which case will electric current be induced in a coil of wire?

An electric current will be induced in a coil of wire when there is a change in magnetic field passing through the coil, according to Faraday's law of electromagnetic induction. This can occur when the magnetic field is moving relative to the coil or when there is a change in the strength of the magnetic field.

Related Questions

What is the factors on which the induced EMF in a coil rotating in a uniform magnetic field depends?

The induced EMF in a coil rotating in a uniform magnetic field depends on the strength of the magnetic field, the number of turns in the coil, the area of the coil, the speed of rotation, and the angle between the magnetic field and the plane of the coil.


What is the direction of the induced current in a coil when it is exposed to a changing magnetic field?

When a coil is exposed to a changing magnetic field, an induced current is generated in the coil. The direction of this induced current is such that it creates a magnetic field that opposes the change in the original magnetic field. This phenomenon is described by Faraday's law of electromagnetic induction.


What is the formula to calculate the average induced emf in a coil when it is rotated in a magnetic field?

The formula to calculate the average induced emf in a coil when it is rotated in a magnetic field is given by: Average Induced EMF N B A sin() Where: N number of turns in the coil B magnetic field strength A area of the coil angular velocity of rotation angle between the magnetic field and the normal to the coil


What is the relationship between the induced voltage in a two-coil system and the magnetic field strength?

The induced voltage in a two-coil system is directly proportional to the magnetic field strength. As the magnetic field strength increases, the induced voltage in the coils also increases.


In which case will electric current be induced in a coil of wire?

An electric current will be induced in a coil of wire when there is a change in magnetic field passing through the coil, according to Faraday's law of electromagnetic induction. This can occur when the magnetic field is moving relative to the coil or when there is a change in the strength of the magnetic field.


What four factors affect the magnitude of the induced emf in a coil of wire?

The magnitude of the induced electromotive force (emf) in a coil of wire is affected by four main factors: the strength of the magnetic field, the area of the coil, the number of turns in the coil, and the rate of change of the magnetic field. According to Faraday's law of electromagnetic induction, a stronger magnetic field or a larger coil area increases the induced emf. Additionally, more turns in the coil enhance the induced voltage, while a faster change in the magnetic field also contributes to a greater induced emf.


What is the direction of the induced current when a magnetic field is rapidly changing in a coil of wire?

When a magnetic field is rapidly changing in a coil of wire, an induced current is generated in the wire. The direction of this induced current is such that it creates a magnetic field that opposes the change in the original magnetic field. This phenomenon is described by Faraday's law of electromagnetic induction.


Why there is an induce current in a coil when a coil is compressed in a magnetic field?

compressing a coil in a magnetic field means that there is a relative movement of the the said coil existing in a magnetic field, hence current will be induced. induction law.Another Answer'Current' is not induced into a coil. It's voltagethat's induced; if the coil forms a closed loop, then current will flow; if there is no closed loop, then no current will flow.The induced voltage results from either a change in current through the coil, or from the relative movement between the coil and an external magnetic field.


What are the reasons why a current is induced in a coil?

Current is not induced into a coil. It's voltage that is induced into a coil. If the coil is connected to a load, or even short circuited, then a current will flow as a result of the induced voltage -but it's the voltage, not the resulting current, that's induced!Voltage is induced into a coil because the the changing magnetic field, due to the change in current (0 to Imax or vice versa) applied to that coil. The process is called 'self induction'.


How induced current produce?

when a conductor moves accross a magnetic field or when magnetic field moves with respect to a stationary conductor for current to be induced, there must be relative motion between the coil and the magnetic.


How induced current is produce?

when a conductor moves accross a magnetic field or when magnetic field moves with respect to a stationary conductor for current to be induced, there must be relative motion between the coil and the magnetic.


What happens when a coil of wire cuts through a magnetic field?

If the magnetic field is fluctuating, or the coil of wire and magnetic field are moving with respect to each other, then a current is induced in the coil of wire. If the two are stationary and the magnetic field is stable, then no current is induced in the coil. However, if there is a current in the coil, from another source, then the coil and the field will exhibit a relative force that will tend to move the coil with respect to the field.