answersLogoWhite

0

When a magnetic field is rapidly changing in a coil of wire, an induced current is generated in the wire. The direction of this induced current is such that it creates a magnetic field that opposes the change in the original magnetic field. This phenomenon is described by Faraday's law of electromagnetic induction.

User Avatar

AnswerBot

5mo ago

What else can I help you with?

Continue Learning about Physics

What is the direction of the induced current in a coil when it is exposed to a changing magnetic field?

When a coil is exposed to a changing magnetic field, an induced current is generated in the coil. The direction of this induced current is such that it creates a magnetic field that opposes the change in the original magnetic field. This phenomenon is described by Faraday's law of electromagnetic induction.


How can we use Lenz's Law to determine the direction of induced current in each case?

Lenz's Law states that the direction of the induced current in a circuit is such that it opposes the change in magnetic flux that caused it. By applying Lenz's Law, we can determine the direction of the induced current by considering the direction of the changing magnetic field and the direction of the induced current that would oppose that change.


What should you do to verify the direction of the induced current in a circuit?

To verify the direction of the induced current in a circuit, you can use the right-hand rule. Point your right thumb in the direction of the changing magnetic field and curl your fingers. The direction your fingers curl will indicate the direction of the induced current.


What is the direction of the induced current in a loop when there is a change in magnetic field direction?

When there is a change in the direction of the magnetic field in a loop, an induced current is generated in the loop in a direction that opposes the change in the magnetic field.


How can one determine the direction of induced current in a circuit?

The direction of induced current in a circuit can be determined using Lenz's Law, which states that the induced current will flow in a direction that opposes the change in magnetic field that caused it. This means that the direction of the induced current will be such that it creates a magnetic field that opposes the original change in magnetic field.

Related Questions

What is the direction of the induced current in a coil when it is exposed to a changing magnetic field?

When a coil is exposed to a changing magnetic field, an induced current is generated in the coil. The direction of this induced current is such that it creates a magnetic field that opposes the change in the original magnetic field. This phenomenon is described by Faraday's law of electromagnetic induction.


How can we use Lenz's Law to determine the direction of induced current in each case?

Lenz's Law states that the direction of the induced current in a circuit is such that it opposes the change in magnetic flux that caused it. By applying Lenz's Law, we can determine the direction of the induced current by considering the direction of the changing magnetic field and the direction of the induced current that would oppose that change.


What should you do to verify the direction of the induced current in a circuit?

To verify the direction of the induced current in a circuit, you can use the right-hand rule. Point your right thumb in the direction of the changing magnetic field and curl your fingers. The direction your fingers curl will indicate the direction of the induced current.


What is the direction of the induced current in a loop when there is a change in magnetic field direction?

When there is a change in the direction of the magnetic field in a loop, an induced current is generated in the loop in a direction that opposes the change in the magnetic field.


How can one determine the direction of induced current in a circuit?

The direction of induced current in a circuit can be determined using Lenz's Law, which states that the induced current will flow in a direction that opposes the change in magnetic field that caused it. This means that the direction of the induced current will be such that it creates a magnetic field that opposes the original change in magnetic field.


What is the direction of induced current in lenzs law?

According to Lenz's Law, the direction of the induced current is such that it opposes the change in magnetic flux that produced it. If the magnetic field through a loop is increasing, the induced current will flow in a direction that creates a magnetic field opposing that increase. Conversely, if the magnetic field is decreasing, the induced current will flow in a direction that attempts to maintain the original magnetic field. This principle ensures the conservation of energy in electromagnetic systems.


What is lenz law of electromagnetic induction?

Lenz's law states that 'for a current induced in a conductor by a changing magnetic field, the current is in such a direction that its own magnetic field opposes the change that produced it.'


What is the statment of lenz law?

The direction of an induced emf or current is such that the magnetic field created by the induced current opposes the change in magnetic flux that created the current.


What does the lenz law state?

The direction of an induced emf or current is such that the magnetic field created by the induced current opposes the change in magnetic flux that created the current.


What determines whether an induced current is a direct current or an alternating current?

There is no such thing as an 'induced current'. What is 'induced' is a voltage. The direction of the induced voltage is determined by the direction of the changing current that induces that voltage, because the induced voltage will always act to oppose that change in current. So, if the current is increasing, then the direction of the induced voltage will act to opposethe increase in current. If the current is decreasing, then the direction of the induced voltage will act to sustainthat current.


What is the induced current in the inner loop?

The induced current in the inner loop is the flow of electric charge that is generated by a changing magnetic field passing through the loop.


What is difference between induced voltage and induced current?

Just as a current flowing through a wire will produce a magnetic field, so a wire moving through a magnetic field will have a current flowing through it. This is called electromagnetic induction and the current in the wire is called induced current. A stationary wire in the presence of a changing magnetic field also has an induced current. A changing magnetic field can be produced either by moving a magnet near to the stationary wire or by using alternating current. A stationary wire in a magnetic field which is not changing will have no current induced in it. You will sometimes see this effect described as induced voltage. Strictly speaking, you will only get an induced current in the wire if it is part of a complete circuit. A wire which is unconnected at both ends will have a difference in voltage between the ends (a potential difference) but current can only flow when the wire is in a circuit. Induced current is used in electricity generation and transformers.Another AnswerThere is no such thing as an 'induced current', only an 'induced voltage'. Current will flow only if the conductor into which the voltage is induced forms part of a closed circuit.