answersLogoWhite

0

In an LC circuit, the current and voltage are related by the equation V L(di/dt) Q/C, where V is the voltage across the components, L is the inductance, C is the capacitance, Q is the charge, and di/dt is the rate of change of current. The current in the circuit is directly proportional to the rate of change of voltage across the components.

User Avatar

AnswerBot

3mo ago

What else can I help you with?

Continue Learning about Physics

What is the relationship between the current and the components in a purely capacitive circuit?

In a purely capacitive circuit, the current and the components have a relationship where the current leads the voltage by 90 degrees. This means that the current and voltage are out of phase in a purely capacitive circuit.


What does the voltage current graph represent in an electrical circuit?

The voltage-current graph in an electrical circuit represents the relationship between voltage (V) and current (I) flowing through the circuit. It shows how the current changes with respect to the voltage, indicating the behavior and characteristics of the circuit components.


What does the voltage vs current graph represent and how can it be used to analyze the relationship between voltage and current in a circuit?

The voltage vs current graph represents the relationship between voltage (V) and current (I) in a circuit. It shows how the current flowing through a circuit changes in response to changes in voltage. By analyzing this graph, one can determine the resistance of the circuit, as resistance is equal to the slope of the graph (R V/I). This can help in understanding how voltage and current interact in a circuit and how different components affect the flow of electricity.


What is the relationship between capacitance and current in an electrical circuit?

The relationship between capacitance and current in an electrical circuit is that capacitance affects the flow of current in the circuit. A higher capacitance means the circuit can store more charge, which can impact the current flowing through the circuit. The current in a circuit with capacitance can change over time as the capacitor charges and discharges.


What is the relationship between current and resistance in a circuit when the voltage is kept constant?

In a circuit with constant voltage, the relationship between current and resistance is inversely proportional. This means that as resistance increases, the current flowing through the circuit decreases, and vice versa.

Related Questions

What is the relationship between the current and the components in a purely capacitive circuit?

In a purely capacitive circuit, the current and the components have a relationship where the current leads the voltage by 90 degrees. This means that the current and voltage are out of phase in a purely capacitive circuit.


What is the relationship between the current leaving the source and the current through each load in a series circuit?

A: In a series circuit the current remains the same for each components only the voltage across each component will change and only if the components are of different value.


What does the voltage current graph represent in an electrical circuit?

The voltage-current graph in an electrical circuit represents the relationship between voltage (V) and current (I) flowing through the circuit. It shows how the current changes with respect to the voltage, indicating the behavior and characteristics of the circuit components.


What does the voltage vs current graph represent and how can it be used to analyze the relationship between voltage and current in a circuit?

The voltage vs current graph represents the relationship between voltage (V) and current (I) in a circuit. It shows how the current flowing through a circuit changes in response to changes in voltage. By analyzing this graph, one can determine the resistance of the circuit, as resistance is equal to the slope of the graph (R V/I). This can help in understanding how voltage and current interact in a circuit and how different components affect the flow of electricity.


What do you mean by resultant current?

The sharing of current between different components in an AC circuit


What is the relationship between capacitance and current in an electrical circuit?

The relationship between capacitance and current in an electrical circuit is that capacitance affects the flow of current in the circuit. A higher capacitance means the circuit can store more charge, which can impact the current flowing through the circuit. The current in a circuit with capacitance can change over time as the capacitor charges and discharges.


What is the relationship between current and resistance in a circuit when the voltage is kept constant?

In a circuit with constant voltage, the relationship between current and resistance is inversely proportional. This means that as resistance increases, the current flowing through the circuit decreases, and vice versa.


What is the relationship between resistance and current in an electrical circuit?

The relationship between resistance and current in an electrical circuit is described by Ohm's Law, which states that the current flowing through a circuit is directly proportional to the voltage applied and inversely proportional to the resistance in the circuit. In simpler terms, as resistance increases, the current flowing through the circuit decreases, and vice versa.


What does the current vs voltage graph reveal about the relationship between current and voltage in the given circuit?

The current vs voltage graph shows that there is a linear relationship between current and voltage in the given circuit. This means that as voltage increases, the current also increases proportionally.


What is the relationship between current and resistance in an electrical circuit?

In an electrical circuit, the relationship between current and resistance is described by Ohm's Law. This law states that the current flowing through a circuit is directly proportional to the voltage applied and inversely proportional to the resistance in the circuit. In simpler terms, as resistance increases, the current flowing through the circuit decreases, and vice versa.


What is the relationship between power (P), current (i), and resistance (r) in an electrical circuit?

The relationship between power (P), current (i), and resistance (r) in an electrical circuit is described by the formula P i2 r. This means that power is directly proportional to the square of the current and the resistance in the circuit.


In a series circuit what happens to the current if you increase the number of components in the circuit?

The current (amps) will remain constant, but the voltage will drop.