answersLogoWhite

0

The relationship between the wavelength of a spectral line and its energy is inverse. This means that as the wavelength decreases, the energy of the spectral line increases, and vice versa.

User Avatar

AnswerBot

4mo ago

What else can I help you with?

Continue Learning about Physics

How does the amount energy affect the size of the wavelength?

As energy increases, the wavelength decreases. This is described by the inverse relationship between energy and wavelength in electromagnetic waves. Higher energy corresponds to shorter wavelengths, and vice versa.


What is the relationship of wavelength and energy in a wave?

The relationship between wavelength and energy in a wave is inverse: as wavelength decreases, energy increases. This is known as the wavelength-energy duality principle in physics, which is described by the equation E = hc/λ, where E is energy, h is Planck's constant, c is the speed of light, and λ is wavelength.


Infrared radiation How can the relationship between wavelength and energy be described?

The relationship between wavelength and energy in infrared radiation can be described by the inverse relationship known as Wien's displacement law. This law states that as the wavelength of infrared radiation increases, its energy decreases, and vice versa. In other words, longer wavelengths correspond to lower energy, and shorter wavelengths correspond to higher energy.


What is the relationship between the work function, wavelength, and energy of a photon in the work function equation?

In the work function equation, the work function is the minimum energy needed to remove an electron from a material. The relationship between the work function, wavelength, and energy of a photon is that the energy of a photon is directly proportional to its frequency, which is inversely proportional to its wavelength. This means that a photon with higher energy (shorter wavelength) can provide enough energy to overcome the work function and eject an electron from the material.


What is the Relationship between wave frequency energy and wavelength?

Wave frequency and wavelength are inversely related: as frequency increases, wavelength decreases, and vice versa. Higher frequency waves have more energy, while longer wavelength waves have lower energy. This relationship is described by the equation E=hf, where E is energy, h is Planck's constant, and f is frequency.

Related Questions

What is the relationship between the wavelength and the frequency of radiant energy?

Wavelength and frequency are inversely proportional.


How does the amount energy affect the size of the wavelength?

As energy increases, the wavelength decreases. This is described by the inverse relationship between energy and wavelength in electromagnetic waves. Higher energy corresponds to shorter wavelengths, and vice versa.


What is the relationship of wavelength and energy in a wave?

The relationship between wavelength and energy in a wave is inverse: as wavelength decreases, energy increases. This is known as the wavelength-energy duality principle in physics, which is described by the equation E = hc/λ, where E is energy, h is Planck's constant, c is the speed of light, and λ is wavelength.


Infrared radiation How can the relationship between wavelength and energy be described?

The relationship between wavelength and energy in infrared radiation can be described by the inverse relationship known as Wien's displacement law. This law states that as the wavelength of infrared radiation increases, its energy decreases, and vice versa. In other words, longer wavelengths correspond to lower energy, and shorter wavelengths correspond to higher energy.


How can one find energy with wavelength?

One can find energy with wavelength by using the equation E hc/, where E represents energy, h is Planck's constant, c is the speed of light, and is the wavelength of the light. This equation shows the relationship between energy and wavelength in electromagnetic radiation.


What is the relationship between the work function, wavelength, and energy of a photon in the work function equation?

In the work function equation, the work function is the minimum energy needed to remove an electron from a material. The relationship between the work function, wavelength, and energy of a photon is that the energy of a photon is directly proportional to its frequency, which is inversely proportional to its wavelength. This means that a photon with higher energy (shorter wavelength) can provide enough energy to overcome the work function and eject an electron from the material.


What is the Relationship between wave frequency energy and wavelength?

Wave frequency and wavelength are inversely related: as frequency increases, wavelength decreases, and vice versa. Higher frequency waves have more energy, while longer wavelength waves have lower energy. This relationship is described by the equation E=hf, where E is energy, h is Planck's constant, and f is frequency.


What is the relationship between wavelength of light and the quantity of energy per photon?

The relationship between wavelength and energy per photon is inverse: shorter wavelengths correspond to higher energy photons, according to the equation E = hc/λ, where E is energy, h is Planck's constant, c is the speed of light, and λ is wavelength.


What is the relationship among wavelength?

Wavelength is the distance between successive points in a wave that are in phase. In general, shorter wavelengths correspond to higher frequencies and higher energy levels. The relationship between wavelength, frequency, and speed of a wave is governed by the wave equation, with wavelength being inversely proportional to frequency.


What is the relationship between the wavelength of light and the quantity of energy per photon?

inversely related


Spectral lines produced from the radiant energy emitted from excited atoms are thought to be due to the movements of electrons?

That’s correct. Spectral lines are produced when electrons in atoms move between energy levels. When an electron drops to a lower energy level, it emits a photon of a specific energy corresponding to a specific wavelength of light, creating spectral lines in the emitted light spectrum.


What is the shortest wavelength present in brackett series of spectral lines?

The shortest wavelength present in the Brackett series of spectral lines is in the infrared region around 1.46 micrometers. This series represents transitions in hydrogen atoms from higher energy levels to the n=4 energy level.