Magnetic striping on the ocean floor is caused by the movement of tectonic plates. As new oceanic crust is formed at mid-ocean ridges, Earth's magnetic field causes iron-rich minerals in the crust to align and record the direction of the magnetic field at that time. This results in alternating patterns of magnetic polarity stripes on the ocean floor.
The plate tectonics based theory ha a three pronged aproach; both the zebra-like magnetic striping and the construction of the mid-ocean ridge system, the seafloor spreading hypothesis (SFS) quickly gained converts and represented another major advance in the development of the plate-tectonics theory. Furthermore, the oceanic crust now came to be appreciated as a natural "tape recording" of the history of the geomagnetic field reversals (GMFR) of the Earth's magnetic field. Nowadays, extensive studies are dedicated to the calibration of the normal-reversal patterns in the oceanic crust on one hand and known timescales derived from the dating of basalt layers in sedimentary sequences (magnetostratigraphy) on the other, to arrive at estimates of past spreading rates and plate reconstructions.
Magnetic stripes that are closer to the ridge crest tend to be younger, while those further away are older. This is because new crust is continually formed at the ridge crest through sea floor spreading, with magnetic minerals aligning themselves with Earth's magnetic field as they solidify, creating the alternating pattern of magnetic striping.
The magnetic force in objects is caused by the alignment of the magnetic moments of the atoms within the material. When these magnetic moments align in the same direction, they create a magnetic field and attract or repel other magnetic materials.
Magnetic materials are magnetized by exposing them to a magnetic field, such as from a magnet or an electromagnet. This causes the magnetic domains within the material to align, creating a net magnetic field. The material retains this magnetic field even after the external field is removed.
An object exhibits magnetism when its atoms have aligned magnetic fields, creating a magnetic force.
These "stripes" formed the pattern known as magnetic striping. ... They hypothesized that the magnetic striping was produced from the generation of magma at mid-ocean ridges during alternating periods of normal and reversed magnetism by the magnetic reversals of the Earth's magnetic field.
Magnetic reversals and sea floor spreading.
Magnetic reversals and sea floor spreading.
Magnetic reversals and sea floor spreading.
Magnetic reversals and sea floor spreading.
A mid-ocean ridge would have magnetic striping on the seafloor. This striping is caused by the alternating polarities of Earth's magnetic field recorded in the basaltic rocks as they cool and solidify at the mid-ocean ridge, providing evidence for seafloor spreading.
pole reversals seafloor spreading
it was use by watching porn
The Mid Ocean Ridge would have magnetic striping. As the seafloor expands, new oceanic crust is spread in either direction. As this process continues over many years, the magnetic poles may switch, altering the magnetism in the new crust. The poles will switch back and forth, producing the magnetic striping that is easily discernible when examining the Mid Ocean Ridge and surrounding seafloor.
causes of magnetic drift causes of magnetic drift causes of magnetic drift
Magma contains many materials which are magnetically affected. When this magma is ejected from the mantle and begins forming new crust, these materials align to the earth's magnetic field. The crust hardens, and the magnetic alignment is fixed (just as in normal magnets, made by using a similar process). The magnetic fields are 'visile' in strips of material, hence the term 'magnetic striping'. seafloor spreading
stripping is when a player causes a player on the opposing team to fumble the ball