In photosystem 1, the role of the reaction center chlorophyll is to absorb photons and initiate the electron transport chain. It passes excited electrons to an electron acceptor, which then moves them through a series of electron carriers to produce NADPH. This process is essential for the conversion of light energy into chemical energy during photosynthesis.
The role of photosystem II is to capture sunlight and initiate the process of photosynthesis by using light energy to split water molecules into oxygen, protons, and electrons. This process replenishes electrons in the photosynthetic electron transport chain and ultimately leads to the generation of ATP and NADPH for the Calvin cycle.
After sunlight hits photosystem 2, it excites electrons within photosystem 2. These electrons are then passed down an electron transport chain to photosystem 1, where they help generate ATP through a series of redox reactions.
Photosystem I absorbs light best at a wavelength of 700 nm, while Photosystem II absorbs light best at a wavelength of 680 nm. Photosystem I transfers electrons to reduce NADP+ to NADPH, while Photosystem II replenishes electrons lost in the process of photosynthesis. Both photosystems work together in the light-dependent reactions of photosynthesis to ultimately produce ATP and NADPH.
The photosynthetic unit where solar energy is absorbed and high-energy electrons are generated is called a "photosystem." Photosystems are protein complexes found in the thylakoid membrane of chloroplasts, and they play a crucial role in the light-dependent reactions of photosynthesis.
Photosystem 1
Photosystem two produces O2, ATP, and NADP+
NADPH
In photosystem 2- water(photolysis) In photosystem 1 - electron from photosystem 2
Photosystem 2 is located in the thylakoid membrane of the chloroplasts, while Photosystem 1 is located downstream from Photosystem 2 in the thylakoid membrane. Both photosystems are important for light-dependent reactions during photosynthesis.
Splitting H2o
Photosystem 2 happens in photosynthesis before photosystem 1. However they are numbered in order of how they were discovered. Photosystem 1 was discovered before photosystem 2. In photosynthesis the order of them is 2 then 1. meaning that photosystem 1 was discovered 1st but photosystem 2 happens 1st in photosynthesis
Photosystem 1
Splitting H2O (Apex)
Splitting H2O (Apex)
Photosystem's electron travel through the electron transport chain(etc) where ATP is produced and then back to the photosystem. In non-cyclic photophosphorylation, Photosystem II electron then is absorbed by photosystem I, photosystem I electron used to form NADPH and photosystem II gets its electron from photolysis of water. For you unfortunate children using Novanet: They move through an electron transport chain to photosystem 1.
Photosystems I and II are both in the thylakoid membranes of the chloroplast.
To make energy-carrier molecules like NADPH